Sarah Robson, A. Alharbi, Wenzhong Gao, A. Khodaei, Ibrahim Alsaidan
{"title":"参与频率调节和能源市场的电动汽车电池经济可行性评估","authors":"Sarah Robson, A. Alharbi, Wenzhong Gao, A. Khodaei, Ibrahim Alsaidan","doi":"10.1109/GreenTech48523.2021.00072","DOIUrl":null,"url":null,"abstract":"The high cost and growing environmental concerns surrounding lithium-ion batteries have motivated research into extending the life of electric vehicle (EV) batteries by repurposing them for second life grid applications. The incorporation of repurposed electric vehicle batteries (REVBs) has the potential to decrease the overall cost of new battery energy storage systems (BESS) and extend the useful life of the materials. This paper focuses on maximizing daily profit that can be made from REVBs by stacking two grid services such as frequency regulation and energy arbitrage while minimizing battery capital cost by using second life EV batteries. A model for battery management with stacked frequency regulation and energy arbitrage is developed and tested using PJM market data. A mixed integer linear programming (MILP) is used to solve the optimization problem. It is found that REVBs can generate higher net profits than a new BESS.","PeriodicalId":146759,"journal":{"name":"2021 IEEE Green Technologies Conference (GreenTech)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Economic Viability Assessment of Repurposed EV Batteries Participating in Frequency Regulation and Energy Markets\",\"authors\":\"Sarah Robson, A. Alharbi, Wenzhong Gao, A. Khodaei, Ibrahim Alsaidan\",\"doi\":\"10.1109/GreenTech48523.2021.00072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high cost and growing environmental concerns surrounding lithium-ion batteries have motivated research into extending the life of electric vehicle (EV) batteries by repurposing them for second life grid applications. The incorporation of repurposed electric vehicle batteries (REVBs) has the potential to decrease the overall cost of new battery energy storage systems (BESS) and extend the useful life of the materials. This paper focuses on maximizing daily profit that can be made from REVBs by stacking two grid services such as frequency regulation and energy arbitrage while minimizing battery capital cost by using second life EV batteries. A model for battery management with stacked frequency regulation and energy arbitrage is developed and tested using PJM market data. A mixed integer linear programming (MILP) is used to solve the optimization problem. It is found that REVBs can generate higher net profits than a new BESS.\",\"PeriodicalId\":146759,\"journal\":{\"name\":\"2021 IEEE Green Technologies Conference (GreenTech)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Green Technologies Conference (GreenTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GreenTech48523.2021.00072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Green Technologies Conference (GreenTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GreenTech48523.2021.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Economic Viability Assessment of Repurposed EV Batteries Participating in Frequency Regulation and Energy Markets
The high cost and growing environmental concerns surrounding lithium-ion batteries have motivated research into extending the life of electric vehicle (EV) batteries by repurposing them for second life grid applications. The incorporation of repurposed electric vehicle batteries (REVBs) has the potential to decrease the overall cost of new battery energy storage systems (BESS) and extend the useful life of the materials. This paper focuses on maximizing daily profit that can be made from REVBs by stacking two grid services such as frequency regulation and energy arbitrage while minimizing battery capital cost by using second life EV batteries. A model for battery management with stacked frequency regulation and energy arbitrage is developed and tested using PJM market data. A mixed integer linear programming (MILP) is used to solve the optimization problem. It is found that REVBs can generate higher net profits than a new BESS.