{"title":"QL-BT:用Q-learning增强行为树的设计和实现","authors":"Rahul Dey, Christopher Child","doi":"10.1109/CIG.2013.6633623","DOIUrl":null,"url":null,"abstract":"Artificial intelligence has become an increasingly important aspect of computer game technology, as designers attempt to deliver engaging experiences for players by creating characters with behavioural realism to match advances in graphics and physics. Recently, behaviour trees have come to the forefront of games AI technology, providing a more intuitive approach than previous techniques such as hierarchical state machines, which often required complex data structures producing poorly structured code when scaled up. The design and creation of behaviour trees, however, requires experience and effort. This research introduces Q-learning behaviour trees (QL-BT), a method for the application of reinforcement learning to behaviour tree design. The technique facilitates AI designers' use of behaviour trees by assisting them in identifying the most appropriate moment to execute each branch of AI logic, as well as providing an implementation that can be used to debug, analyse and optimize early behaviour tree prototypes. Initial experiments demonstrate that behaviour trees produced by the QL-BT algorithm effectively integrate RL, automate tree design, and are human-readable.","PeriodicalId":158902,"journal":{"name":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"QL-BT: Enhancing behaviour tree design and implementation with Q-learning\",\"authors\":\"Rahul Dey, Christopher Child\",\"doi\":\"10.1109/CIG.2013.6633623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence has become an increasingly important aspect of computer game technology, as designers attempt to deliver engaging experiences for players by creating characters with behavioural realism to match advances in graphics and physics. Recently, behaviour trees have come to the forefront of games AI technology, providing a more intuitive approach than previous techniques such as hierarchical state machines, which often required complex data structures producing poorly structured code when scaled up. The design and creation of behaviour trees, however, requires experience and effort. This research introduces Q-learning behaviour trees (QL-BT), a method for the application of reinforcement learning to behaviour tree design. The technique facilitates AI designers' use of behaviour trees by assisting them in identifying the most appropriate moment to execute each branch of AI logic, as well as providing an implementation that can be used to debug, analyse and optimize early behaviour tree prototypes. Initial experiments demonstrate that behaviour trees produced by the QL-BT algorithm effectively integrate RL, automate tree design, and are human-readable.\",\"PeriodicalId\":158902,\"journal\":{\"name\":\"2013 IEEE Conference on Computational Inteligence in Games (CIG)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computational Inteligence in Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2013.6633623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2013.6633623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
QL-BT: Enhancing behaviour tree design and implementation with Q-learning
Artificial intelligence has become an increasingly important aspect of computer game technology, as designers attempt to deliver engaging experiences for players by creating characters with behavioural realism to match advances in graphics and physics. Recently, behaviour trees have come to the forefront of games AI technology, providing a more intuitive approach than previous techniques such as hierarchical state machines, which often required complex data structures producing poorly structured code when scaled up. The design and creation of behaviour trees, however, requires experience and effort. This research introduces Q-learning behaviour trees (QL-BT), a method for the application of reinforcement learning to behaviour tree design. The technique facilitates AI designers' use of behaviour trees by assisting them in identifying the most appropriate moment to execute each branch of AI logic, as well as providing an implementation that can be used to debug, analyse and optimize early behaviour tree prototypes. Initial experiments demonstrate that behaviour trees produced by the QL-BT algorithm effectively integrate RL, automate tree design, and are human-readable.