QL-BT:用Q-learning增强行为树的设计和实现

Rahul Dey, Christopher Child
{"title":"QL-BT:用Q-learning增强行为树的设计和实现","authors":"Rahul Dey, Christopher Child","doi":"10.1109/CIG.2013.6633623","DOIUrl":null,"url":null,"abstract":"Artificial intelligence has become an increasingly important aspect of computer game technology, as designers attempt to deliver engaging experiences for players by creating characters with behavioural realism to match advances in graphics and physics. Recently, behaviour trees have come to the forefront of games AI technology, providing a more intuitive approach than previous techniques such as hierarchical state machines, which often required complex data structures producing poorly structured code when scaled up. The design and creation of behaviour trees, however, requires experience and effort. This research introduces Q-learning behaviour trees (QL-BT), a method for the application of reinforcement learning to behaviour tree design. The technique facilitates AI designers' use of behaviour trees by assisting them in identifying the most appropriate moment to execute each branch of AI logic, as well as providing an implementation that can be used to debug, analyse and optimize early behaviour tree prototypes. Initial experiments demonstrate that behaviour trees produced by the QL-BT algorithm effectively integrate RL, automate tree design, and are human-readable.","PeriodicalId":158902,"journal":{"name":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"QL-BT: Enhancing behaviour tree design and implementation with Q-learning\",\"authors\":\"Rahul Dey, Christopher Child\",\"doi\":\"10.1109/CIG.2013.6633623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence has become an increasingly important aspect of computer game technology, as designers attempt to deliver engaging experiences for players by creating characters with behavioural realism to match advances in graphics and physics. Recently, behaviour trees have come to the forefront of games AI technology, providing a more intuitive approach than previous techniques such as hierarchical state machines, which often required complex data structures producing poorly structured code when scaled up. The design and creation of behaviour trees, however, requires experience and effort. This research introduces Q-learning behaviour trees (QL-BT), a method for the application of reinforcement learning to behaviour tree design. The technique facilitates AI designers' use of behaviour trees by assisting them in identifying the most appropriate moment to execute each branch of AI logic, as well as providing an implementation that can be used to debug, analyse and optimize early behaviour tree prototypes. Initial experiments demonstrate that behaviour trees produced by the QL-BT algorithm effectively integrate RL, automate tree design, and are human-readable.\",\"PeriodicalId\":158902,\"journal\":{\"name\":\"2013 IEEE Conference on Computational Inteligence in Games (CIG)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computational Inteligence in Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2013.6633623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2013.6633623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

人工智能已经成为电脑游戏技术中越来越重要的一个方面,因为设计师试图通过创造具有行为现实主义的角色来为玩家提供吸引人的体验,以配合图像和物理的进步。最近,行为树成为了游戏AI技术的前沿,提供了一种比以前的技术(如分层状态机)更直观的方法,这通常需要复杂的数据结构,在扩展时产生结构不良的代码。然而,行为树的设计和创造需要经验和努力。本研究介绍了q -学习行为树(QL-BT),一种将强化学习应用于行为树设计的方法。该技术有助于AI设计师使用行为树,帮助他们确定执行AI逻辑每个分支的最合适时机,并提供可用于调试、分析和优化早期行为树原型的实现。初步实验表明,由QL-BT算法生成的行为树有效地集成了强化学习、自动树设计,并且是人类可读的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QL-BT: Enhancing behaviour tree design and implementation with Q-learning
Artificial intelligence has become an increasingly important aspect of computer game technology, as designers attempt to deliver engaging experiences for players by creating characters with behavioural realism to match advances in graphics and physics. Recently, behaviour trees have come to the forefront of games AI technology, providing a more intuitive approach than previous techniques such as hierarchical state machines, which often required complex data structures producing poorly structured code when scaled up. The design and creation of behaviour trees, however, requires experience and effort. This research introduces Q-learning behaviour trees (QL-BT), a method for the application of reinforcement learning to behaviour tree design. The technique facilitates AI designers' use of behaviour trees by assisting them in identifying the most appropriate moment to execute each branch of AI logic, as well as providing an implementation that can be used to debug, analyse and optimize early behaviour tree prototypes. Initial experiments demonstrate that behaviour trees produced by the QL-BT algorithm effectively integrate RL, automate tree design, and are human-readable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
QL-BT: Enhancing behaviour tree design and implementation with Q-learning Landscape automata for search based procedural content generation The structure of a 3-state finite transducer representation for Prisoner's Dilemma LGOAP: Adaptive layered planning for real-time videogames Evolved weapons for RPG drop systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1