伴随宇宙微波背景的参考系的特征

V. M. Svishch
{"title":"伴随宇宙微波背景的参考系的特征","authors":"V. M. Svishch","doi":"10.24018/ejphysics.2021.3.6.115","DOIUrl":null,"url":null,"abstract":"The features of reference frame, concomitant to the cosmic microwave background, immobile relatively cosmic microwave background, are considered. It is shown that the features of reference frame, concomitant to the cosmic microwave background (CMB), are determined by its properties. Any other object in the Universe and reference frame concomitant to it, is immersed in the CMB and moves relative to the reference frame concomitant to microwave background radiation. The zero pecular velocity of the reference frame concomitant to the microwave background radiation is analogous to the zero temperature on the Kelvin scale. Time in it is most rapid in relation to the time in any other reference frame, observable and measurable in any of them. The features of time, pecular speed, relative speed of two inertial RF, stellar aberration, and Doppler effect in the reference frame concomitant to the microwave background radiation are considered. According to the determined relative velocity of the two reference systems and the peculiar velocity of the reference system with the observer, the components of their relative velocity are determined. Determining the components of the relative velocity of the reference frames with determining the synchronous time for all points at any time in the reference frame concomitant to microwave background radiation, allows us to investigate the possibility of determining the speed of light \"one way\" and using it to navigate vehicles in distant space. Stability of angular location of heterogeneities of CMB in reference frame concomitant to CMB, allows us to use these heterogeneities for the increase of exactness of astronomic reference frames HCRF and ICRF.","PeriodicalId":292629,"journal":{"name":"European Journal of Applied Physics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Features of the Reference Frame Concomitant to the Cosmic Microwave Background\",\"authors\":\"V. M. Svishch\",\"doi\":\"10.24018/ejphysics.2021.3.6.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The features of reference frame, concomitant to the cosmic microwave background, immobile relatively cosmic microwave background, are considered. It is shown that the features of reference frame, concomitant to the cosmic microwave background (CMB), are determined by its properties. Any other object in the Universe and reference frame concomitant to it, is immersed in the CMB and moves relative to the reference frame concomitant to microwave background radiation. The zero pecular velocity of the reference frame concomitant to the microwave background radiation is analogous to the zero temperature on the Kelvin scale. Time in it is most rapid in relation to the time in any other reference frame, observable and measurable in any of them. The features of time, pecular speed, relative speed of two inertial RF, stellar aberration, and Doppler effect in the reference frame concomitant to the microwave background radiation are considered. According to the determined relative velocity of the two reference systems and the peculiar velocity of the reference system with the observer, the components of their relative velocity are determined. Determining the components of the relative velocity of the reference frames with determining the synchronous time for all points at any time in the reference frame concomitant to microwave background radiation, allows us to investigate the possibility of determining the speed of light \\\"one way\\\" and using it to navigate vehicles in distant space. Stability of angular location of heterogeneities of CMB in reference frame concomitant to CMB, allows us to use these heterogeneities for the increase of exactness of astronomic reference frames HCRF and ICRF.\",\"PeriodicalId\":292629,\"journal\":{\"name\":\"European Journal of Applied Physics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejphysics.2021.3.6.115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejphysics.2021.3.6.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了参照系与宇宙微波背景相伴随、宇宙微波背景相对不动的特点。结果表明,伴随宇宙微波背景(CMB)的参照系的特征是由它的性质决定的。宇宙中的任何其他物体和与之相伴的参考系,都沉浸在CMB中,并相对于与微波背景辐射相伴的参考系运动。伴随微波背景辐射的参考系的零速度类似于开尔文标度上的零温度。它中的时间相对于任何其他参考系中的时间是最快的,在任何参考系中都是可观察和可测量的。考虑了参考系中伴随微波背景辐射的时间、速度、两个惯性射频的相对速度、恒星像差和多普勒效应等特征。根据确定的两个参照系的相对速度和参照系与观测者的特殊速度,确定了它们的相对速度分量。通过确定参考系中与微波背景辐射相关的所有点在任何时间的同步时间来确定参考系相对速度的组成部分,使我们能够研究确定“单向”光速并使用它来导航遥远空间中的飞行器的可能性。CMB在伴生参考系中的异质性角定位的稳定性,使我们能够利用这些异质性来提高天文参考系HCRF和ICRF的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Features of the Reference Frame Concomitant to the Cosmic Microwave Background
The features of reference frame, concomitant to the cosmic microwave background, immobile relatively cosmic microwave background, are considered. It is shown that the features of reference frame, concomitant to the cosmic microwave background (CMB), are determined by its properties. Any other object in the Universe and reference frame concomitant to it, is immersed in the CMB and moves relative to the reference frame concomitant to microwave background radiation. The zero pecular velocity of the reference frame concomitant to the microwave background radiation is analogous to the zero temperature on the Kelvin scale. Time in it is most rapid in relation to the time in any other reference frame, observable and measurable in any of them. The features of time, pecular speed, relative speed of two inertial RF, stellar aberration, and Doppler effect in the reference frame concomitant to the microwave background radiation are considered. According to the determined relative velocity of the two reference systems and the peculiar velocity of the reference system with the observer, the components of their relative velocity are determined. Determining the components of the relative velocity of the reference frames with determining the synchronous time for all points at any time in the reference frame concomitant to microwave background radiation, allows us to investigate the possibility of determining the speed of light "one way" and using it to navigate vehicles in distant space. Stability of angular location of heterogeneities of CMB in reference frame concomitant to CMB, allows us to use these heterogeneities for the increase of exactness of astronomic reference frames HCRF and ICRF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back Reaction of the Electromagnetic Radiation and the Local Inertial Frame ChatGPT on the Cosmic Microwave Background Equation of Motion for the Electron or Proton Cores in Free Space According to the Planck Vacuum Theory The Ergo Region of the Kerr Black Hole in the Isotropic Coordinate ChatGPT on the Sagnac Effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1