分析、分类和解释软件用户推文中的情绪

Grant Williams, Anas Mahmoud
{"title":"分析、分类和解释软件用户推文中的情绪","authors":"Grant Williams, Anas Mahmoud","doi":"10.1109/SEmotion.2017.1","DOIUrl":null,"url":null,"abstract":"Twitter enables software developers to track users'reactions to newly released systems. Such information, oftenexpressed in the form of raw emotions, can be leveraged to enablea more informed software release process. However, automaticallycapturing and interpreting multi-dimensional structures ofhuman emotions expressed in Twitter messages is not a trivialtask. Challenges stem from the scale of the data available, itsinherently sparse nature, and the high percentage of domainspecificwords. Motivated by these observations, in this paperwe present a preliminary study aimed at detecting, classifying, and interpreting emotions in software users' tweets. A datasetof 1000 tweets sampled from a broad range of software systems'Twitter feeds is used to conduct our analysis. Our results showthat supervised text classifiers (Naive Bayes and Support vectorMachines) are more accurate than general-purpose sentimentanalysis techniques in detecting general and specific emotionsexpressed in software-relevant Tweets.","PeriodicalId":202796,"journal":{"name":"2017 IEEE/ACM 2nd International Workshop on Emotion Awareness in Software Engineering (SEmotion)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Analyzing, Classifying, and Interpreting Emotions in Software Users' Tweets\",\"authors\":\"Grant Williams, Anas Mahmoud\",\"doi\":\"10.1109/SEmotion.2017.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter enables software developers to track users'reactions to newly released systems. Such information, oftenexpressed in the form of raw emotions, can be leveraged to enablea more informed software release process. However, automaticallycapturing and interpreting multi-dimensional structures ofhuman emotions expressed in Twitter messages is not a trivialtask. Challenges stem from the scale of the data available, itsinherently sparse nature, and the high percentage of domainspecificwords. Motivated by these observations, in this paperwe present a preliminary study aimed at detecting, classifying, and interpreting emotions in software users' tweets. A datasetof 1000 tweets sampled from a broad range of software systems'Twitter feeds is used to conduct our analysis. Our results showthat supervised text classifiers (Naive Bayes and Support vectorMachines) are more accurate than general-purpose sentimentanalysis techniques in detecting general and specific emotionsexpressed in software-relevant Tweets.\",\"PeriodicalId\":202796,\"journal\":{\"name\":\"2017 IEEE/ACM 2nd International Workshop on Emotion Awareness in Software Engineering (SEmotion)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 2nd International Workshop on Emotion Awareness in Software Engineering (SEmotion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEmotion.2017.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 2nd International Workshop on Emotion Awareness in Software Engineering (SEmotion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEmotion.2017.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

Twitter使软件开发人员能够跟踪用户对新发布系统的反应。这样的信息,通常以原始情感的形式表达,可以用来实现更明智的软件发布过程。然而,自动捕捉和解释Twitter消息中表达的人类情感的多维结构并不是一项微不足道的任务。挑战源于可用数据的规模,其固有的稀疏性质,以及领域特定词的高比例。在这些观察的激励下,在本文中,我们提出了一项旨在检测、分类和解释软件用户推文中的情绪的初步研究。从广泛的软件系统的twitter feed中采样的1000条tweet数据集用于进行我们的分析。我们的研究结果表明,监督文本分类器(朴素贝叶斯和支持向量机)在检测与软件相关的推文中表达的一般和特定情感方面比通用情感分析技术更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing, Classifying, and Interpreting Emotions in Software Users' Tweets
Twitter enables software developers to track users'reactions to newly released systems. Such information, oftenexpressed in the form of raw emotions, can be leveraged to enablea more informed software release process. However, automaticallycapturing and interpreting multi-dimensional structures ofhuman emotions expressed in Twitter messages is not a trivialtask. Challenges stem from the scale of the data available, itsinherently sparse nature, and the high percentage of domainspecificwords. Motivated by these observations, in this paperwe present a preliminary study aimed at detecting, classifying, and interpreting emotions in software users' tweets. A datasetof 1000 tweets sampled from a broad range of software systems'Twitter feeds is used to conduct our analysis. Our results showthat supervised text classifiers (Naive Bayes and Support vectorMachines) are more accurate than general-purpose sentimentanalysis techniques in detecting general and specific emotionsexpressed in software-relevant Tweets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing, Classifying, and Interpreting Emotions in Software Users' Tweets Connecting the Dots: Measuring Effectiveness and Affectiveness in Software Systems Characterizing and Predicting Mental Fatigue during Programming Tasks OpenAffect API: A Proposal for Enabling an Ecosystem of Emotion Awareness Tools Toward a Model of Emotion Influences on Agile Decision Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1