基于因果图前向传播的测试用例最小化算法的优化

Ehlimana Krupalija, Emir Cogo, Šeila Bećirović, Irfan Prazina, Damir Pozderac, Ingmar Bešić
{"title":"基于因果图前向传播的测试用例最小化算法的优化","authors":"Ehlimana Krupalija, Emir Cogo, Šeila Bećirović, Irfan Prazina, Damir Pozderac, Ingmar Bešić","doi":"10.1109/INFOTEH57020.2023.10094154","DOIUrl":null,"url":null,"abstract":"Many different methods are used for generating blackbox test case suites. Test case minimization is used for reducing the feasible test case suite size in order to minimize the cost of testing while ensuring maximum fault detection. This paper presents an optimization of the existing test case minimization algorithm based on forward-propagation of the cause-effect graphing method. The algorithm performs test case prioritization based on test case strength, a newly introduced test case selection metric. The optimized version of the minimization algorithm was evaluated by using thirteen different examples from the available literature. In cases where the existing algorithm did not generate the minimum test case subsets, significant improvements of test effect coverage metric values were achieved. Test effect coverage metric values were not improved only in cases where maximum optimization was already achieved by using the existing algorithm.","PeriodicalId":287923,"journal":{"name":"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the test case minimization algorithm based on forward-propagation in cause-effect graphs\",\"authors\":\"Ehlimana Krupalija, Emir Cogo, Šeila Bećirović, Irfan Prazina, Damir Pozderac, Ingmar Bešić\",\"doi\":\"10.1109/INFOTEH57020.2023.10094154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many different methods are used for generating blackbox test case suites. Test case minimization is used for reducing the feasible test case suite size in order to minimize the cost of testing while ensuring maximum fault detection. This paper presents an optimization of the existing test case minimization algorithm based on forward-propagation of the cause-effect graphing method. The algorithm performs test case prioritization based on test case strength, a newly introduced test case selection metric. The optimized version of the minimization algorithm was evaluated by using thirteen different examples from the available literature. In cases where the existing algorithm did not generate the minimum test case subsets, significant improvements of test effect coverage metric values were achieved. Test effect coverage metric values were not improved only in cases where maximum optimization was already achieved by using the existing algorithm.\",\"PeriodicalId\":287923,\"journal\":{\"name\":\"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOTEH57020.2023.10094154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH57020.2023.10094154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多不同的方法用于生成黑盒测试用例套件。测试用例最小化用于减少可行的测试用例套件大小,以最小化测试成本,同时确保最大限度地检测故障。本文提出了一种基于因果图法前向传播的测试用例最小化算法的优化方法。该算法基于测试用例强度(一个新引入的测试用例选择度量)执行测试用例优先级。利用现有文献中的13个不同的例子对优化后的最小化算法进行了评估。在现有算法没有生成最小测试用例子集的情况下,测试效果覆盖度量值得到了显著的改进。只有在使用现有算法已经实现最大优化的情况下,测试效果覆盖度量值才会得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of the test case minimization algorithm based on forward-propagation in cause-effect graphs
Many different methods are used for generating blackbox test case suites. Test case minimization is used for reducing the feasible test case suite size in order to minimize the cost of testing while ensuring maximum fault detection. This paper presents an optimization of the existing test case minimization algorithm based on forward-propagation of the cause-effect graphing method. The algorithm performs test case prioritization based on test case strength, a newly introduced test case selection metric. The optimized version of the minimization algorithm was evaluated by using thirteen different examples from the available literature. In cases where the existing algorithm did not generate the minimum test case subsets, significant improvements of test effect coverage metric values were achieved. Test effect coverage metric values were not improved only in cases where maximum optimization was already achieved by using the existing algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intro basics of modeling user rights management for the university diploma issuing process with the support of the Hyperledger Fabric C64 Emulation on Modern Operating System Potential of Mass Customization using Product Configurators Optimization of the test case minimization algorithm based on forward-propagation in cause-effect graphs A faster path to sustainability: the use of Digital Twins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1