Peng Fang, Qifang Zhuo, Yan Cai, Lan Tian, Haoshi Zhang, Yue Zheng, Guanglin Li, Liming Wu, Xiaoqing Zhang
{"title":"压电极体及其在可穿戴生理信号传感器和能量采集器中的应用","authors":"Peng Fang, Qifang Zhuo, Yan Cai, Lan Tian, Haoshi Zhang, Yue Zheng, Guanglin Li, Liming Wu, Xiaoqing Zhang","doi":"10.1109/BSN.2015.7299373","DOIUrl":null,"url":null,"abstract":"Piezoelectrets are polymer-foam based space-charge electrets with strong piezoelectric effect. The piezoelectricity in piezoelectrets occurs due to the elastic heterogeneous cellular structure and the regularly arranged dipolar space charges stored therein. Some polymers have been experimented for piezoelectret preparation, where polypropylene (PP) is the mostly applied material at present. PP piezoelectrets have several promising features, such as large piezoelectric d33 coefficient, small thickness, light weight, low cost, large area scale, as well as flexibility and even stretchability, which would enable them very suitable for applications in signal sensing and energy harvesting. In this work, the electromechanical properties of flexible and stretchable PP piezoelectrets are introduced and some of their possible applications as wearable physiological-signal sensors and micro-energy harvesters are demonstrated by experiments.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezoelectrets and their applications as wearable physiological-signal sensors and energy harvesters\",\"authors\":\"Peng Fang, Qifang Zhuo, Yan Cai, Lan Tian, Haoshi Zhang, Yue Zheng, Guanglin Li, Liming Wu, Xiaoqing Zhang\",\"doi\":\"10.1109/BSN.2015.7299373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezoelectrets are polymer-foam based space-charge electrets with strong piezoelectric effect. The piezoelectricity in piezoelectrets occurs due to the elastic heterogeneous cellular structure and the regularly arranged dipolar space charges stored therein. Some polymers have been experimented for piezoelectret preparation, where polypropylene (PP) is the mostly applied material at present. PP piezoelectrets have several promising features, such as large piezoelectric d33 coefficient, small thickness, light weight, low cost, large area scale, as well as flexibility and even stretchability, which would enable them very suitable for applications in signal sensing and energy harvesting. In this work, the electromechanical properties of flexible and stretchable PP piezoelectrets are introduced and some of their possible applications as wearable physiological-signal sensors and micro-energy harvesters are demonstrated by experiments.\",\"PeriodicalId\":447934,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2015.7299373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Piezoelectrets and their applications as wearable physiological-signal sensors and energy harvesters
Piezoelectrets are polymer-foam based space-charge electrets with strong piezoelectric effect. The piezoelectricity in piezoelectrets occurs due to the elastic heterogeneous cellular structure and the regularly arranged dipolar space charges stored therein. Some polymers have been experimented for piezoelectret preparation, where polypropylene (PP) is the mostly applied material at present. PP piezoelectrets have several promising features, such as large piezoelectric d33 coefficient, small thickness, light weight, low cost, large area scale, as well as flexibility and even stretchability, which would enable them very suitable for applications in signal sensing and energy harvesting. In this work, the electromechanical properties of flexible and stretchable PP piezoelectrets are introduced and some of their possible applications as wearable physiological-signal sensors and micro-energy harvesters are demonstrated by experiments.