{"title":"直接雷击下接地网周围地电位的分布","authors":"Zhe Li, Yuxuan Ding, Jinxin Cao, Yaping Du, Chuanzhen Jia, Xiangen Zhao","doi":"10.1109/ICLP56858.2022.9942629","DOIUrl":null,"url":null,"abstract":"Human safety is a major concern in lightning disasters. The step voltage around grounding grids under a direct lightning strike may cause an electric shock to the human body and result in casualty. Therefore, the design of the grounding system plays a crucial role in the safety of personal electricity. In this study, the partial element equivalent circuit method (PEEC) is adopted to calculate the ground potential rise (GPR) at the nearby grounding grids under direct lightning strokes. The influence of the buried depth of the grounding grids on the ground potential distribution is discussed. Different grounding configurations such as single electrodes, fork-type grounding grids, and ground grids are studied. This will facilitate the design of the grounding system and ensure electrical safety.","PeriodicalId":403323,"journal":{"name":"2022 36th International Conference on Lightning Protection (ICLP)","volume":"281 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Distribution of Ground Potential around Grounding grids under a Direct Lightning Strike\",\"authors\":\"Zhe Li, Yuxuan Ding, Jinxin Cao, Yaping Du, Chuanzhen Jia, Xiangen Zhao\",\"doi\":\"10.1109/ICLP56858.2022.9942629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human safety is a major concern in lightning disasters. The step voltage around grounding grids under a direct lightning strike may cause an electric shock to the human body and result in casualty. Therefore, the design of the grounding system plays a crucial role in the safety of personal electricity. In this study, the partial element equivalent circuit method (PEEC) is adopted to calculate the ground potential rise (GPR) at the nearby grounding grids under direct lightning strokes. The influence of the buried depth of the grounding grids on the ground potential distribution is discussed. Different grounding configurations such as single electrodes, fork-type grounding grids, and ground grids are studied. This will facilitate the design of the grounding system and ensure electrical safety.\",\"PeriodicalId\":403323,\"journal\":{\"name\":\"2022 36th International Conference on Lightning Protection (ICLP)\",\"volume\":\"281 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 36th International Conference on Lightning Protection (ICLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICLP56858.2022.9942629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 36th International Conference on Lightning Protection (ICLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICLP56858.2022.9942629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Distribution of Ground Potential around Grounding grids under a Direct Lightning Strike
Human safety is a major concern in lightning disasters. The step voltage around grounding grids under a direct lightning strike may cause an electric shock to the human body and result in casualty. Therefore, the design of the grounding system plays a crucial role in the safety of personal electricity. In this study, the partial element equivalent circuit method (PEEC) is adopted to calculate the ground potential rise (GPR) at the nearby grounding grids under direct lightning strokes. The influence of the buried depth of the grounding grids on the ground potential distribution is discussed. Different grounding configurations such as single electrodes, fork-type grounding grids, and ground grids are studied. This will facilitate the design of the grounding system and ensure electrical safety.