环境辅助生活环境中SOM和HMM混合分类器的雾计算网关

N. Suryadevara, Subham Saha
{"title":"环境辅助生活环境中SOM和HMM混合分类器的雾计算网关","authors":"N. Suryadevara, Subham Saha","doi":"10.1109/SmartIoT55134.2022.00042","DOIUrl":null,"url":null,"abstract":"Implementing Machine Learning algorithms with low-power devices and limited computational resources is challenging. Research on temporal data of Ambient Assisted Living (AAL) environment sensors to handle many states of the deep learning models that are used to train unsupervised data is limited. Computational aspects of the data training and inferring the insights from the sensor data of the AAL environment are essential aspects of a fog computing framework. The AAL environment embodies a fog computing structure with limited computing capabilities. This paper studies how to train and infer meaning information from the AAL sensor data using a hybrid algorithm of Self Organizing Map (SOM) and Hidden Markov Model (HMM) on a resource constraint computing device such as Raspberry Pi was explored. The research investigations reveal that the execution of the hybrid method on the fog computing gateway could cluster the anomalous instances accurately.","PeriodicalId":422269,"journal":{"name":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid SOM and HMM classifier in a Fog Computing gateway for Ambient Assisted Living Environment\",\"authors\":\"N. Suryadevara, Subham Saha\",\"doi\":\"10.1109/SmartIoT55134.2022.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implementing Machine Learning algorithms with low-power devices and limited computational resources is challenging. Research on temporal data of Ambient Assisted Living (AAL) environment sensors to handle many states of the deep learning models that are used to train unsupervised data is limited. Computational aspects of the data training and inferring the insights from the sensor data of the AAL environment are essential aspects of a fog computing framework. The AAL environment embodies a fog computing structure with limited computing capabilities. This paper studies how to train and infer meaning information from the AAL sensor data using a hybrid algorithm of Self Organizing Map (SOM) and Hidden Markov Model (HMM) on a resource constraint computing device such as Raspberry Pi was explored. The research investigations reveal that the execution of the hybrid method on the fog computing gateway could cluster the anomalous instances accurately.\",\"PeriodicalId\":422269,\"journal\":{\"name\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIoT55134.2022.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT55134.2022.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在低功耗设备和有限的计算资源下实现机器学习算法具有挑战性。对环境辅助生活(AAL)环境传感器的时间数据进行研究以处理用于训练无监督数据的深度学习模型的许多状态是有限的。数据训练和从AAL环境的传感器数据推断见解的计算方面是雾计算框架的基本方面。AAL环境体现了一种计算能力有限的雾计算结构。本文研究了如何在资源约束计算设备(如树莓派)上使用自组织映射(SOM)和隐马尔可夫模型(HMM)的混合算法从AAL传感器数据中训练和推断意义信息。研究表明,在雾计算网关上执行混合方法可以准确地聚类异常实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid SOM and HMM classifier in a Fog Computing gateway for Ambient Assisted Living Environment
Implementing Machine Learning algorithms with low-power devices and limited computational resources is challenging. Research on temporal data of Ambient Assisted Living (AAL) environment sensors to handle many states of the deep learning models that are used to train unsupervised data is limited. Computational aspects of the data training and inferring the insights from the sensor data of the AAL environment are essential aspects of a fog computing framework. The AAL environment embodies a fog computing structure with limited computing capabilities. This paper studies how to train and infer meaning information from the AAL sensor data using a hybrid algorithm of Self Organizing Map (SOM) and Hidden Markov Model (HMM) on a resource constraint computing device such as Raspberry Pi was explored. The research investigations reveal that the execution of the hybrid method on the fog computing gateway could cluster the anomalous instances accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SmartCare: Detecting Heart Failure and Diabetes Using Smartwatch A Subspace Fusion of Hyper-parameter Optimization Method Based on Mean Regression A hybrid SOM and HMM classifier in a Fog Computing gateway for Ambient Assisted Living Environment The transitional phase of Boost.Asio and POCO C++ networking libraries towards IPv6 and IoT networking security Automotive Components Localization and De-globalization Purchasing Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1