Ziyaul Haque, M. S. Iqbal, Ausaf Ahmad, M. S. Khan, J. Prakash
{"title":"内部转录间隔区(ITS)测序技术对木霉分离物的分子鉴定及其在生物防治中的应用","authors":"Ziyaul Haque, M. S. Iqbal, Ausaf Ahmad, M. S. Khan, J. Prakash","doi":"10.2174/1874070702014010070","DOIUrl":null,"url":null,"abstract":"\n \n In the present investigation, Trichoderma spp., isolated from rhizospheric soil, has been identified by Internal Transcribed Spacer (ITS) region sequencing technique and its antagonistic activity was evaluated against A. niger.\n \n \n \n The sequencing analysis was done with its ITS1 region of the rRNA gene. Using the ITS1 amplified products for all isolated fungi, a bi-directional DNA sequencing was done with high quality bases (>98% - 100%). Antagonistic activity was done using dual culture technique.\n \n \n \n All of the ITS1 nucleotide sequences obtained in this study matched 97% - 100% with the published sequence of Trichoderma spp. The results confirmed the strains as T. asperellum and T. viride with gene bank accession no. (ZTa); MK937669 and (ZTv); MK503705, respectively. When phylogenetic analysis was done for the isolates, the optimal tree with the sum of branch length = 0.69585023 and 0.10077756 for T. asperellum and T. viride, respectively, was observed. There were a total of 678 and 767 for T. asperellum and T. viride positions in the final dataset, respectively. Antagonistic activity was done for the isolated strains of Trichoderma spp. against A. niger, and it was found that T. asperellum showed maximum antagonistic activity (79.33±7.09%).\n \n \n \n The findings prolong the genome availability for relative investigations pointing out phenotypic variances to compare with Trichoderma genetic diversity. The present investigation delivered the Bases of future studies for better knowledge in understanding the complicated connections of Trichoderma spp. to be used as an effective biocontrol agent.\n","PeriodicalId":296126,"journal":{"name":"The Open Biotechnology Journal","volume":"168-169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Molecular Characterization of \\n \\n Trichoderma \\n \\n spp. Isolates by Internal Transcribed Spacer (ITS) Region Sequencing Technique and its Use as a Biocontrol Agent\",\"authors\":\"Ziyaul Haque, M. S. Iqbal, Ausaf Ahmad, M. S. Khan, J. Prakash\",\"doi\":\"10.2174/1874070702014010070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n In the present investigation, Trichoderma spp., isolated from rhizospheric soil, has been identified by Internal Transcribed Spacer (ITS) region sequencing technique and its antagonistic activity was evaluated against A. niger.\\n \\n \\n \\n The sequencing analysis was done with its ITS1 region of the rRNA gene. Using the ITS1 amplified products for all isolated fungi, a bi-directional DNA sequencing was done with high quality bases (>98% - 100%). Antagonistic activity was done using dual culture technique.\\n \\n \\n \\n All of the ITS1 nucleotide sequences obtained in this study matched 97% - 100% with the published sequence of Trichoderma spp. The results confirmed the strains as T. asperellum and T. viride with gene bank accession no. (ZTa); MK937669 and (ZTv); MK503705, respectively. When phylogenetic analysis was done for the isolates, the optimal tree with the sum of branch length = 0.69585023 and 0.10077756 for T. asperellum and T. viride, respectively, was observed. There were a total of 678 and 767 for T. asperellum and T. viride positions in the final dataset, respectively. Antagonistic activity was done for the isolated strains of Trichoderma spp. against A. niger, and it was found that T. asperellum showed maximum antagonistic activity (79.33±7.09%).\\n \\n \\n \\n The findings prolong the genome availability for relative investigations pointing out phenotypic variances to compare with Trichoderma genetic diversity. The present investigation delivered the Bases of future studies for better knowledge in understanding the complicated connections of Trichoderma spp. to be used as an effective biocontrol agent.\\n\",\"PeriodicalId\":296126,\"journal\":{\"name\":\"The Open Biotechnology Journal\",\"volume\":\"168-169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Biotechnology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874070702014010070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Biotechnology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874070702014010070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular Characterization of
Trichoderma
spp. Isolates by Internal Transcribed Spacer (ITS) Region Sequencing Technique and its Use as a Biocontrol Agent
In the present investigation, Trichoderma spp., isolated from rhizospheric soil, has been identified by Internal Transcribed Spacer (ITS) region sequencing technique and its antagonistic activity was evaluated against A. niger.
The sequencing analysis was done with its ITS1 region of the rRNA gene. Using the ITS1 amplified products for all isolated fungi, a bi-directional DNA sequencing was done with high quality bases (>98% - 100%). Antagonistic activity was done using dual culture technique.
All of the ITS1 nucleotide sequences obtained in this study matched 97% - 100% with the published sequence of Trichoderma spp. The results confirmed the strains as T. asperellum and T. viride with gene bank accession no. (ZTa); MK937669 and (ZTv); MK503705, respectively. When phylogenetic analysis was done for the isolates, the optimal tree with the sum of branch length = 0.69585023 and 0.10077756 for T. asperellum and T. viride, respectively, was observed. There were a total of 678 and 767 for T. asperellum and T. viride positions in the final dataset, respectively. Antagonistic activity was done for the isolated strains of Trichoderma spp. against A. niger, and it was found that T. asperellum showed maximum antagonistic activity (79.33±7.09%).
The findings prolong the genome availability for relative investigations pointing out phenotypic variances to compare with Trichoderma genetic diversity. The present investigation delivered the Bases of future studies for better knowledge in understanding the complicated connections of Trichoderma spp. to be used as an effective biocontrol agent.