非对称多核手机游戏的电源管理

A. Pathania, Santiago Pagani, M. Shafique, J. Henkel
{"title":"非对称多核手机游戏的电源管理","authors":"A. Pathania, Santiago Pagani, M. Shafique, J. Henkel","doi":"10.1109/ISLPED.2015.7273521","DOIUrl":null,"url":null,"abstract":"Gaming on mobile platforms is highly power hungry and rapidly drains the limited-capacity battery. In multi-threaded gaming, each thread has different processing requirements and even a single slow thread may lead to Quality of Service (QoS) violations. Further, modern mobile platforms are equipped with asymmetric multi-core processors, so that different cores exhibit diverse power and performance properties. These asymmetric cores along with different Dynamic Power Management (DPM) techniques enable a high degree of power efficiency in mobile gaming. The default Linux power manager (i.e. “Governor”) of asymmetric multi-cores performs power-wise inefficient for mobile games as it over allocates resources for processing threads by being oblivious to the QoS. The state-of-the-art Governor for mobile gaming does not account for multi-threaded gaming workloads, which are mainstream in mobile gaming. In this work, we present a power-performance characterization of multi-threaded mobile games by executing them on a real-world mobile platform with an asymmetric multi-core. This analysis is leveraged to propose a QoS-aware Governor running a lightweight online heuristic that holistically accounts for thread-to-core mapping and DPM. This solution, when integrated into the platform's Operating System (OS), provides 12% improved power efficiency on average.","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Power management for mobile games on asymmetric multi-cores\",\"authors\":\"A. Pathania, Santiago Pagani, M. Shafique, J. Henkel\",\"doi\":\"10.1109/ISLPED.2015.7273521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaming on mobile platforms is highly power hungry and rapidly drains the limited-capacity battery. In multi-threaded gaming, each thread has different processing requirements and even a single slow thread may lead to Quality of Service (QoS) violations. Further, modern mobile platforms are equipped with asymmetric multi-core processors, so that different cores exhibit diverse power and performance properties. These asymmetric cores along with different Dynamic Power Management (DPM) techniques enable a high degree of power efficiency in mobile gaming. The default Linux power manager (i.e. “Governor”) of asymmetric multi-cores performs power-wise inefficient for mobile games as it over allocates resources for processing threads by being oblivious to the QoS. The state-of-the-art Governor for mobile gaming does not account for multi-threaded gaming workloads, which are mainstream in mobile gaming. In this work, we present a power-performance characterization of multi-threaded mobile games by executing them on a real-world mobile platform with an asymmetric multi-core. This analysis is leveraged to propose a QoS-aware Governor running a lightweight online heuristic that holistically accounts for thread-to-core mapping and DPM. This solution, when integrated into the platform's Operating System (OS), provides 12% improved power efficiency on average.\",\"PeriodicalId\":421236,\"journal\":{\"name\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2015.7273521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2015.7273521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

手机平台上的游戏非常耗电,很快就会耗尽有限容量的电池。在多线程游戏中,每个线程都有不同的处理需求,甚至单个慢线程也可能导致服务质量(QoS)的违反。此外,现代移动平台配备了非对称多核处理器,因此不同的核心表现出不同的功率和性能特性。这些不对称的内核加上不同的动态电源管理(DPM)技术,使得手机游戏的电源效率很高。非对称多核的默认Linux电源管理器(即“总督”)在手机游戏中执行低效率的电源管理器,因为它通过忽略QoS而为处理线程分配过多的资源。用于手机游戏的最先进的总督并没有考虑到多线程游戏工作负载,这是手机游戏的主流。在这项工作中,我们通过在具有非对称多核的真实移动平台上执行多线程移动游戏来展示其功率性能特征。这个分析被用来提出一个qos感知的调控器,它运行一个轻量级的在线启发式算法,从整体上考虑线程到核的映射和DPM。当集成到平台的操作系统(OS)中时,该解决方案可平均提高12%的电源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power management for mobile games on asymmetric multi-cores
Gaming on mobile platforms is highly power hungry and rapidly drains the limited-capacity battery. In multi-threaded gaming, each thread has different processing requirements and even a single slow thread may lead to Quality of Service (QoS) violations. Further, modern mobile platforms are equipped with asymmetric multi-core processors, so that different cores exhibit diverse power and performance properties. These asymmetric cores along with different Dynamic Power Management (DPM) techniques enable a high degree of power efficiency in mobile gaming. The default Linux power manager (i.e. “Governor”) of asymmetric multi-cores performs power-wise inefficient for mobile games as it over allocates resources for processing threads by being oblivious to the QoS. The state-of-the-art Governor for mobile gaming does not account for multi-threaded gaming workloads, which are mainstream in mobile gaming. In this work, we present a power-performance characterization of multi-threaded mobile games by executing them on a real-world mobile platform with an asymmetric multi-core. This analysis is leveraged to propose a QoS-aware Governor running a lightweight online heuristic that holistically accounts for thread-to-core mapping and DPM. This solution, when integrated into the platform's Operating System (OS), provides 12% improved power efficiency on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel slope detection technique for robust STTRAM sensing Power management for mobile games on asymmetric multi-cores Leveraging emerging nonvolatile memory in high-level synthesis with loop transformations An efficient DVS scheme for on-chip networks using reconfigurable Virtual Channel allocators Experimental characterization of in-package microfluidic cooling on a System-on-Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1