聚苯乙烯(PS)溶液浓度对纳米气泡形成的影响

D. Li, Y. Pan, X. Zhao
{"title":"聚苯乙烯(PS)溶液浓度对纳米气泡形成的影响","authors":"D. Li, Y. Pan, X. Zhao","doi":"10.1109/NANO.2013.6721064","DOIUrl":null,"url":null,"abstract":"Drag reduction of liquid flows on solid/liquid interface has become an important issue with the development of microfluidics systems. Theoretical and experimental studies have shown that at the solid-liquid interface the presence of nanobubbles is believed to be responsible for boundary slip, and the size, quantity and distribution of nanobubbles on hydrophobic surface will influence the slip length. In this paper, surface nanobubbles formed on Polystyrene (PS) films were imaged by atomic force microscope (AFM), and the influences of PS solution concentration adopted when spin-coating on nanobubbles were investigated.","PeriodicalId":189707,"journal":{"name":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Polystyrene (PS) solution concentration on the formation of nanobubbles\",\"authors\":\"D. Li, Y. Pan, X. Zhao\",\"doi\":\"10.1109/NANO.2013.6721064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drag reduction of liquid flows on solid/liquid interface has become an important issue with the development of microfluidics systems. Theoretical and experimental studies have shown that at the solid-liquid interface the presence of nanobubbles is believed to be responsible for boundary slip, and the size, quantity and distribution of nanobubbles on hydrophobic surface will influence the slip length. In this paper, surface nanobubbles formed on Polystyrene (PS) films were imaged by atomic force microscope (AFM), and the influences of PS solution concentration adopted when spin-coating on nanobubbles were investigated.\",\"PeriodicalId\":189707,\"journal\":{\"name\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2013.6721064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2013.6721064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着微流体系统的发展,流体在固液界面上的减阻已成为一个重要的问题。理论和实验研究表明,在固液界面处,纳米气泡的存在是导致边界滑移的原因,而纳米气泡在疏水表面的大小、数量和分布会影响滑移长度。利用原子力显微镜(AFM)对聚苯乙烯(PS)薄膜表面形成的纳米气泡进行了成像,研究了自旋涂覆时采用的PS溶液浓度对纳米气泡的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Polystyrene (PS) solution concentration on the formation of nanobubbles
Drag reduction of liquid flows on solid/liquid interface has become an important issue with the development of microfluidics systems. Theoretical and experimental studies have shown that at the solid-liquid interface the presence of nanobubbles is believed to be responsible for boundary slip, and the size, quantity and distribution of nanobubbles on hydrophobic surface will influence the slip length. In this paper, surface nanobubbles formed on Polystyrene (PS) films were imaged by atomic force microscope (AFM), and the influences of PS solution concentration adopted when spin-coating on nanobubbles were investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of quantum well thermoelectric energy harvester by CMOS process ESD protection design for radio-frequency integrated circuits in nanoscale CMOS technology Optical manipulation of biological cell without measurement of cell velocity A bottom-up engineered broadband optical nanoabsorber for radiometry and energy and harnessing applications Fabrication of multilayered tube-shaped microstructures embedding cells inside microfluidic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1