变叶尖速比直叶VAWT流场及气动性能数值研究

Mei Yi, Q. Jianjun
{"title":"变叶尖速比直叶VAWT流场及气动性能数值研究","authors":"Mei Yi, Q. Jianjun","doi":"10.2174/1874155X01509011017","DOIUrl":null,"url":null,"abstract":"This paper studies the relationship between unsteady flow features and instantaneous torque and power performance of straight bladed vertical axis wind turbine at variable tip speed ratios. The rotor unsteady flow field simulation was carried out by using computational fluid dynamics method. The flow physics and the principle of changing flow filed acting on torque performance and power performance has been analyzed where the rotating rotor was the major concern. The results show that the flow feature alters from periodical blade dynamic stall vortexes generation, development and shedding at low tip speed ratio to cyclical formation, evolution and diffusion of blade wake flow with the rising tip speed ratio. Both vortex shedding around the blade and interaction of blade wakes degrade the rotor aerodynamic performance. It is suggested that, to absorbing the maximum wind energy, delaying the blade vortex shedding and reducing the range of blade wake evolution and diffusion should be included in the rotor aerodynamic design.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical Study of Flow Field and Aerodynamic Performance of StraightBladed VAWT at Variable Tip Speed Ratios\",\"authors\":\"Mei Yi, Q. Jianjun\",\"doi\":\"10.2174/1874155X01509011017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the relationship between unsteady flow features and instantaneous torque and power performance of straight bladed vertical axis wind turbine at variable tip speed ratios. The rotor unsteady flow field simulation was carried out by using computational fluid dynamics method. The flow physics and the principle of changing flow filed acting on torque performance and power performance has been analyzed where the rotating rotor was the major concern. The results show that the flow feature alters from periodical blade dynamic stall vortexes generation, development and shedding at low tip speed ratio to cyclical formation, evolution and diffusion of blade wake flow with the rising tip speed ratio. Both vortex shedding around the blade and interaction of blade wakes degrade the rotor aerodynamic performance. It is suggested that, to absorbing the maximum wind energy, delaying the blade vortex shedding and reducing the range of blade wake evolution and diffusion should be included in the rotor aerodynamic design.\",\"PeriodicalId\":267392,\"journal\":{\"name\":\"The Open Mechanical Engineering Journal\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Mechanical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874155X01509011017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Mechanical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874155X01509011017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了变叶尖速比直叶垂直轴风力机的非定常流动特性与瞬时转矩和功率性能的关系。采用计算流体力学方法对转子非定常流场进行了仿真。分析了流场对转矩性能和功率性能影响的流动物理特性和流场变化原理,其中主要关注的是旋转转子。结果表明:低叶尖速比时叶片动态失速涡的周期性产生、发展和脱落,随着叶尖速比的增加,叶片尾流的周期性形成、演变和扩散发生了变化;叶片周围的旋涡脱落和叶片尾迹的相互作用都会降低转子的气动性能。建议在旋翼气动设计中考虑最大限度地吸收风能,延缓叶片涡脱落,减小叶片尾迹演化和扩散范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Study of Flow Field and Aerodynamic Performance of StraightBladed VAWT at Variable Tip Speed Ratios
This paper studies the relationship between unsteady flow features and instantaneous torque and power performance of straight bladed vertical axis wind turbine at variable tip speed ratios. The rotor unsteady flow field simulation was carried out by using computational fluid dynamics method. The flow physics and the principle of changing flow filed acting on torque performance and power performance has been analyzed where the rotating rotor was the major concern. The results show that the flow feature alters from periodical blade dynamic stall vortexes generation, development and shedding at low tip speed ratio to cyclical formation, evolution and diffusion of blade wake flow with the rising tip speed ratio. Both vortex shedding around the blade and interaction of blade wakes degrade the rotor aerodynamic performance. It is suggested that, to absorbing the maximum wind energy, delaying the blade vortex shedding and reducing the range of blade wake evolution and diffusion should be included in the rotor aerodynamic design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wear and Corrosion Resistance of Hardened Fe-Al-Mn Grinding Ball Revised Lewis Bending Stress Capacity Model The Efficient and Tentative Model for Extenics Replications of the Moveable Robots Controllable Magnetoactive Polymer Conduit Experimental Studying of the Variations of Surface Roughness and Dimensional Accuracy in Dry Hard Turning Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1