基于学习特征的数据驱动的前提推理

Saswat Padhi, Rahul Sharma, T. Millstein
{"title":"基于学习特征的数据驱动的前提推理","authors":"Saswat Padhi, Rahul Sharma, T. Millstein","doi":"10.1145/2908080.2908099","DOIUrl":null,"url":null,"abstract":"We extend the data-driven approach to inferring preconditions for code from a set of test executions. Prior work requires a fixed set of features, atomic predicates that define the search space of possible preconditions, to be specified in advance. In contrast, we introduce a technique for on-demand feature learning, which automatically expands the search space of candidate preconditions in a targeted manner as necessary. We have instantiated our approach in a tool called PIE. In addition to making precondition inference more expressive, we show how to apply our feature-learning technique to the setting of data-driven loop invariant inference. We evaluate our approach by using PIE to infer rich preconditions for black-box OCaml library functions and using our loop-invariant inference algorithm as part of an automatic program verifier for C++ programs.","PeriodicalId":178839,"journal":{"name":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":"{\"title\":\"Data-driven precondition inference with learned features\",\"authors\":\"Saswat Padhi, Rahul Sharma, T. Millstein\",\"doi\":\"10.1145/2908080.2908099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the data-driven approach to inferring preconditions for code from a set of test executions. Prior work requires a fixed set of features, atomic predicates that define the search space of possible preconditions, to be specified in advance. In contrast, we introduce a technique for on-demand feature learning, which automatically expands the search space of candidate preconditions in a targeted manner as necessary. We have instantiated our approach in a tool called PIE. In addition to making precondition inference more expressive, we show how to apply our feature-learning technique to the setting of data-driven loop invariant inference. We evaluate our approach by using PIE to infer rich preconditions for black-box OCaml library functions and using our loop-invariant inference algorithm as part of an automatic program verifier for C++ programs.\",\"PeriodicalId\":178839,\"journal\":{\"name\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"232 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2908080.2908099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2908080.2908099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

摘要

我们扩展了数据驱动的方法,从一组测试执行中推断代码的前提条件。先前的工作需要预先指定一组固定的特征,即定义可能前提条件的搜索空间的原子谓词。相反,我们引入了一种按需特征学习技术,该技术可以根据需要有针对性地自动扩展候选前提条件的搜索空间。我们已经在一个名为PIE的工具中实例化了我们的方法。除了使前提推理更具表现力之外,我们还展示了如何将我们的特征学习技术应用于数据驱动循环不变推理的设置。我们通过使用PIE来推断黑盒OCaml库函数的丰富前提条件,并使用我们的循环不变推理算法作为c++程序自动程序验证器的一部分来评估我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven precondition inference with learned features
We extend the data-driven approach to inferring preconditions for code from a set of test executions. Prior work requires a fixed set of features, atomic predicates that define the search space of possible preconditions, to be specified in advance. In contrast, we introduce a technique for on-demand feature learning, which automatically expands the search space of candidate preconditions in a targeted manner as necessary. We have instantiated our approach in a tool called PIE. In addition to making precondition inference more expressive, we show how to apply our feature-learning technique to the setting of data-driven loop invariant inference. We evaluate our approach by using PIE to infer rich preconditions for black-box OCaml library functions and using our loop-invariant inference algorithm as part of an automatic program verifier for C++ programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing the limits of program-specific garbage collection performance Data-driven precondition inference with learned features SDNRacer: concurrency analysis for software-defined networks Exposing errors related to weak memory in GPU applications Effective padding of multidimensional arrays to avoid cache conflict misses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1