基于多传感器信息融合的双导管倾斜无人机导航系统设计

Tongyue Gao, H. Ge, Jinjun Rao, Zhenbang Gong, Jun Luo
{"title":"基于多传感器信息融合的双导管倾斜无人机导航系统设计","authors":"Tongyue Gao, H. Ge, Jinjun Rao, Zhenbang Gong, Jun Luo","doi":"10.1109/MFI.2012.6343008","DOIUrl":null,"url":null,"abstract":"Recently, the UAV has become the research focus at home and abroad. this paper puts forward a new aircraft type: double ducted tilting Subminiature UAV system, and carries out the research of the navigation system for this suav. This paper puts forward to apply the gyroscope, accelerometer and magnetometer, using kalman filtering algorithm to establish the optimal attitude matrix, namely the best digital platform. The optimal attitude matrix based on this method can avoid the long-term accumulated errors of attitude matrix in conventional integrated navigation. In addition, the paper puts forward kalman algorithm combined with integrated navigation, which can be adjusted according to the motion information of the carrier. Based on this method, the integrated navigation system can gain the best navigation information under different motion state. Finally, this paper proves that the navigation system design based on multisensor information fusion.","PeriodicalId":103145,"journal":{"name":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design of double ducted tilting SUAV navigation system based on multi-sensor information fusion\",\"authors\":\"Tongyue Gao, H. Ge, Jinjun Rao, Zhenbang Gong, Jun Luo\",\"doi\":\"10.1109/MFI.2012.6343008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the UAV has become the research focus at home and abroad. this paper puts forward a new aircraft type: double ducted tilting Subminiature UAV system, and carries out the research of the navigation system for this suav. This paper puts forward to apply the gyroscope, accelerometer and magnetometer, using kalman filtering algorithm to establish the optimal attitude matrix, namely the best digital platform. The optimal attitude matrix based on this method can avoid the long-term accumulated errors of attitude matrix in conventional integrated navigation. In addition, the paper puts forward kalman algorithm combined with integrated navigation, which can be adjusted according to the motion information of the carrier. Based on this method, the integrated navigation system can gain the best navigation information under different motion state. Finally, this paper proves that the navigation system design based on multisensor information fusion.\",\"PeriodicalId\":103145,\"journal\":{\"name\":\"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2012.6343008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2012.6343008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,无人机已成为国内外的研究热点。提出了一种新型飞行器——双导管倾转式超小型无人机系统,并对该无人机的导航系统进行了研究。本文提出应用陀螺仪、加速度计和磁力计,利用卡尔曼滤波算法建立最优姿态矩阵,即最佳数字平台。基于该方法的最优姿态矩阵可以避免传统组合导航中姿态矩阵的长期累积误差。此外,本文还提出了结合组合导航的卡尔曼算法,可以根据载体的运动信息进行调整。基于该方法,组合导航系统可以在不同运动状态下获得最佳的导航信息。最后,对基于多传感器信息融合的导航系统设计进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of double ducted tilting SUAV navigation system based on multi-sensor information fusion
Recently, the UAV has become the research focus at home and abroad. this paper puts forward a new aircraft type: double ducted tilting Subminiature UAV system, and carries out the research of the navigation system for this suav. This paper puts forward to apply the gyroscope, accelerometer and magnetometer, using kalman filtering algorithm to establish the optimal attitude matrix, namely the best digital platform. The optimal attitude matrix based on this method can avoid the long-term accumulated errors of attitude matrix in conventional integrated navigation. In addition, the paper puts forward kalman algorithm combined with integrated navigation, which can be adjusted according to the motion information of the carrier. Based on this method, the integrated navigation system can gain the best navigation information under different motion state. Finally, this paper proves that the navigation system design based on multisensor information fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DP-Fusion: A generic framework for online multi sensor recognition Design of double ducted tilting SUAV navigation system based on multi-sensor information fusion Modeling and control architecture for the competitive networked robot system based on POMDP A sensor fusion approach for localization with cumulative error elimination On Active Sensing methods for localization scenarios with range-based measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1