基于非高斯模型的截尾空间数据贝叶斯分析

V. Tadayon
{"title":"基于非高斯模型的截尾空间数据贝叶斯分析","authors":"V. Tadayon","doi":"10.18869/acadpub.jsri.13.2.155","DOIUrl":null,"url":null,"abstract":"In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augmentation method and Markov chain Monte Carlo (MCMC) algorithms to do posterior calculations. The methodology is illustrated using simulated data, as well as applying it to a real data set. Keywords: Censored data, data augmentation, non-Gaussian spatial models, outlier, unified skew Gaussian.","PeriodicalId":409996,"journal":{"name":"arXiv: Applications","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model\",\"authors\":\"V. Tadayon\",\"doi\":\"10.18869/acadpub.jsri.13.2.155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augmentation method and Markov chain Monte Carlo (MCMC) algorithms to do posterior calculations. The methodology is illustrated using simulated data, as well as applying it to a real data set. Keywords: Censored data, data augmentation, non-Gaussian spatial models, outlier, unified skew Gaussian.\",\"PeriodicalId\":409996,\"journal\":{\"name\":\"arXiv: Applications\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18869/acadpub.jsri.13.2.155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/acadpub.jsri.13.2.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们建议从贝叶斯的角度使用一个偏高斯-对数高斯模型来分析空间截尾数据。这种方法提供了对偏对数高斯模型的扩展,以适应偏态和重尾以及截尾数据。上述所有特征都是空间数据的三个普遍特征。我们利用数据增强法和马尔可夫链蒙特卡罗(MCMC)算法进行后验计算。该方法是用模拟数据来说明,并将其应用于一个真实的数据集。关键词:截尾数据,数据增强,非高斯空间模型,离群值,统一偏高斯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model
In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augmentation method and Markov chain Monte Carlo (MCMC) algorithms to do posterior calculations. The methodology is illustrated using simulated data, as well as applying it to a real data set. Keywords: Censored data, data augmentation, non-Gaussian spatial models, outlier, unified skew Gaussian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weekly Bayesian Modelling Strategy to Predict Deaths by COVID-19: a Model and Case Study for the State of Santa Catarina, Brazil Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization Revealing the Transmission Dynamics of COVID-19: A Bayesian Framework for Rt Estimation Improving living biomass C-stock loss estimates by combining optical satellite, airborne laser scanning, and NFI data Bayesian classification for dating archaeological sites via projectile points.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1