{"title":"评估将新技术注入NASA任务的剩余风险","authors":"S. Cornford, K. Hicks","doi":"10.1109/RAMS.2000.816337","DOIUrl":null,"url":null,"abstract":"NASA's need to infuse new technologies into its missions has been described. Some of the challenges associated with new technology infusion, and a way to meet those challenges, have been presented. The Technology Infusion Guideline (TIG) process has been described as well as the Defect Detection and Prevention (DDP) process that is the underlying evaluation 'engine'. An example of this under evaluation on one of NASA's technologies development has been presented. This example is used to illustrate the generic process. The results of implementing the TIG process on the example technology clearly demonstrates that the TIG process can penetrate to underlying technical details to evaluate the viability of continued technology development resources. The technology evaluated was deemed 'on the right track' and critical to NASA's future missions needs. The TIG process results in a technology infusion roadmap, or prioritized set of activities which must be performed to address the identified residual risks. These activities include alignment with other parallel technology development work, specific characterization and testing, breadboard development and miniaturization and ruggedization. The return on investment for implementing this process has been measured at over 20:1 with significant schedule savings. The risk reduction as a result of implementing this process will only be directly measurable after the technology matures to a greater extent.","PeriodicalId":178321,"journal":{"name":"Annual Reliability and Maintainability Symposium. 2000 Proceedings. International Symposium on Product Quality and Integrity (Cat. No.00CH37055)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evaluating the residual risks of infusing new technologies into NASA missions\",\"authors\":\"S. Cornford, K. Hicks\",\"doi\":\"10.1109/RAMS.2000.816337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NASA's need to infuse new technologies into its missions has been described. Some of the challenges associated with new technology infusion, and a way to meet those challenges, have been presented. The Technology Infusion Guideline (TIG) process has been described as well as the Defect Detection and Prevention (DDP) process that is the underlying evaluation 'engine'. An example of this under evaluation on one of NASA's technologies development has been presented. This example is used to illustrate the generic process. The results of implementing the TIG process on the example technology clearly demonstrates that the TIG process can penetrate to underlying technical details to evaluate the viability of continued technology development resources. The technology evaluated was deemed 'on the right track' and critical to NASA's future missions needs. The TIG process results in a technology infusion roadmap, or prioritized set of activities which must be performed to address the identified residual risks. These activities include alignment with other parallel technology development work, specific characterization and testing, breadboard development and miniaturization and ruggedization. The return on investment for implementing this process has been measured at over 20:1 with significant schedule savings. The risk reduction as a result of implementing this process will only be directly measurable after the technology matures to a greater extent.\",\"PeriodicalId\":178321,\"journal\":{\"name\":\"Annual Reliability and Maintainability Symposium. 2000 Proceedings. International Symposium on Product Quality and Integrity (Cat. No.00CH37055)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reliability and Maintainability Symposium. 2000 Proceedings. International Symposium on Product Quality and Integrity (Cat. No.00CH37055)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS.2000.816337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reliability and Maintainability Symposium. 2000 Proceedings. International Symposium on Product Quality and Integrity (Cat. No.00CH37055)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.2000.816337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating the residual risks of infusing new technologies into NASA missions
NASA's need to infuse new technologies into its missions has been described. Some of the challenges associated with new technology infusion, and a way to meet those challenges, have been presented. The Technology Infusion Guideline (TIG) process has been described as well as the Defect Detection and Prevention (DDP) process that is the underlying evaluation 'engine'. An example of this under evaluation on one of NASA's technologies development has been presented. This example is used to illustrate the generic process. The results of implementing the TIG process on the example technology clearly demonstrates that the TIG process can penetrate to underlying technical details to evaluate the viability of continued technology development resources. The technology evaluated was deemed 'on the right track' and critical to NASA's future missions needs. The TIG process results in a technology infusion roadmap, or prioritized set of activities which must be performed to address the identified residual risks. These activities include alignment with other parallel technology development work, specific characterization and testing, breadboard development and miniaturization and ruggedization. The return on investment for implementing this process has been measured at over 20:1 with significant schedule savings. The risk reduction as a result of implementing this process will only be directly measurable after the technology matures to a greater extent.