利用反应性禁忌搜索恢复极面几何

Qifa Ke, Gang Xu, Songde Ma
{"title":"利用反应性禁忌搜索恢复极面几何","authors":"Qifa Ke, Gang Xu, Songde Ma","doi":"10.1109/ICCV.1998.710804","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new approach to recovering epipolar geometry from a pair of uncalibrated images. We first detect the feature points. By minimizing a proposed cost function, we match the feature points, discard the outliers and recover the epipolar geometry in one step. Experiments on real images show that this approach is effective and fast.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recovering epipolar geometry by reactive tabu search\",\"authors\":\"Qifa Ke, Gang Xu, Songde Ma\",\"doi\":\"10.1109/ICCV.1998.710804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new approach to recovering epipolar geometry from a pair of uncalibrated images. We first detect the feature points. By minimizing a proposed cost function, we match the feature points, discard the outliers and recover the epipolar geometry in one step. Experiments on real images show that this approach is effective and fast.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种新的方法来恢复从一对未校准的图像极几何。我们首先检测特征点。通过最小化所提出的代价函数,我们在一步中匹配特征点,丢弃异常值并恢复极几何形状。在真实图像上的实验表明,该方法是有效的、快速的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recovering epipolar geometry by reactive tabu search
In this paper we propose a new approach to recovering epipolar geometry from a pair of uncalibrated images. We first detect the feature points. By minimizing a proposed cost function, we match the feature points, discard the outliers and recover the epipolar geometry in one step. Experiments on real images show that this approach is effective and fast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing and evaluating interest points Snake pedals: geometric models with physics-based control Recovering epipolar geometry by reactive tabu search Utilization of stereo disparity and optical flow information for human interaction Intensity and feature based stereo matching by disparity parameterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1