综合分割分类方法在多发性硬化症分析中的应用

A. Akselrod-Ballin, M. Galun, R. Basri, A. Brandt, M. Gomori, M. Filippi, P. Valsasina
{"title":"综合分割分类方法在多发性硬化症分析中的应用","authors":"A. Akselrod-Ballin, M. Galun, R. Basri, A. Brandt, M. Gomori, M. Filippi, P. Valsasina","doi":"10.1109/CVPR.2006.55","DOIUrl":null,"url":null,"abstract":"We present a novel multiscale approach that combines segmentation with classification to detect abnormal brain structures in medical imagery, and demonstrate its utility in detecting multiple sclerosis lesions in 3D MRI data. Our method uses segmentation to obtain a hierarchical decomposition of a multi-channel, anisotropic MRI scan. It then produces a rich set of features describing the segments in terms of intensity, shape, location, and neighborhood relations. These features are then fed into a decision tree-based classifier, trained with data labeled by experts, enabling the detection of lesions in all scales. Unlike common approaches that use voxel-by-voxel analysis, our system can utilize regional properties that are often important for characterizing abnormal brain structures. We provide experiments showing successful detections of lesions in both simulated and real MR images.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"An Integrated Segmentation and Classification Approach Applied to Multiple Sclerosis Analysis\",\"authors\":\"A. Akselrod-Ballin, M. Galun, R. Basri, A. Brandt, M. Gomori, M. Filippi, P. Valsasina\",\"doi\":\"10.1109/CVPR.2006.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel multiscale approach that combines segmentation with classification to detect abnormal brain structures in medical imagery, and demonstrate its utility in detecting multiple sclerosis lesions in 3D MRI data. Our method uses segmentation to obtain a hierarchical decomposition of a multi-channel, anisotropic MRI scan. It then produces a rich set of features describing the segments in terms of intensity, shape, location, and neighborhood relations. These features are then fed into a decision tree-based classifier, trained with data labeled by experts, enabling the detection of lesions in all scales. Unlike common approaches that use voxel-by-voxel analysis, our system can utilize regional properties that are often important for characterizing abnormal brain structures. We provide experiments showing successful detections of lesions in both simulated and real MR images.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

我们提出了一种新的多尺度方法,结合分割和分类来检测医学图像中的异常大脑结构,并展示了其在3D MRI数据中检测多发性硬化症病变的实用性。我们的方法使用分割来获得多通道各向异性MRI扫描的分层分解。然后根据强度、形状、位置和邻里关系,生成一组丰富的特征来描述这些片段。然后将这些特征输入到基于决策树的分类器中,使用专家标记的数据进行训练,从而能够在所有尺度上检测病变。与使用逐体素分析的常见方法不同,我们的系统可以利用通常对表征异常大脑结构很重要的区域属性。我们提供了在模拟和真实的MR图像中成功检测病变的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Integrated Segmentation and Classification Approach Applied to Multiple Sclerosis Analysis
We present a novel multiscale approach that combines segmentation with classification to detect abnormal brain structures in medical imagery, and demonstrate its utility in detecting multiple sclerosis lesions in 3D MRI data. Our method uses segmentation to obtain a hierarchical decomposition of a multi-channel, anisotropic MRI scan. It then produces a rich set of features describing the segments in terms of intensity, shape, location, and neighborhood relations. These features are then fed into a decision tree-based classifier, trained with data labeled by experts, enabling the detection of lesions in all scales. Unlike common approaches that use voxel-by-voxel analysis, our system can utilize regional properties that are often important for characterizing abnormal brain structures. We provide experiments showing successful detections of lesions in both simulated and real MR images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1