基于神经双胞胎的人工智能加速器结构测试生成

Arjun Chaudhuri, Sanmitra Banerjee, K. Chakrabarty
{"title":"基于神经双胞胎的人工智能加速器结构测试生成","authors":"Arjun Chaudhuri, Sanmitra Banerjee, K. Chakrabarty","doi":"10.1109/IOLTS56730.2022.9897773","DOIUrl":null,"url":null,"abstract":"We present a neural twin-based structural test pattern generation method for stuck-at faults in systolic array-based AI inferencing accelerators. The neural twin is a neural representation of the gate-level netlist of a processing element and it provides a one-to-one topological correspondence with the PE netlist. We leverage neural twin-enabled backpropagation for gradient computation to determine an input pattern that sensitizes a fault in the netlist. Our framework also supports pattern compaction for a batch of faults. Consequently, GPU-accelerated test-pattern generation is achieved with the proposed framework that can potentially detect hard-to-detect and random-pattern-resistant faults in AI accelerators. Experimental results for 4-bit, 8-bit, and 16-bit fixed-point accelerator arrays show the effectiveness of the proposed method.","PeriodicalId":274595,"journal":{"name":"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Test Generation for AI Accelerators using Neural Twins\",\"authors\":\"Arjun Chaudhuri, Sanmitra Banerjee, K. Chakrabarty\",\"doi\":\"10.1109/IOLTS56730.2022.9897773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a neural twin-based structural test pattern generation method for stuck-at faults in systolic array-based AI inferencing accelerators. The neural twin is a neural representation of the gate-level netlist of a processing element and it provides a one-to-one topological correspondence with the PE netlist. We leverage neural twin-enabled backpropagation for gradient computation to determine an input pattern that sensitizes a fault in the netlist. Our framework also supports pattern compaction for a batch of faults. Consequently, GPU-accelerated test-pattern generation is achieved with the proposed framework that can potentially detect hard-to-detect and random-pattern-resistant faults in AI accelerators. Experimental results for 4-bit, 8-bit, and 16-bit fixed-point accelerator arrays show the effectiveness of the proposed method.\",\"PeriodicalId\":274595,\"journal\":{\"name\":\"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOLTS56730.2022.9897773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS56730.2022.9897773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对基于收缩阵列的人工智能推理加速器中卡在故障,提出了一种基于神经孪生的结构测试模式生成方法。神经孪生是处理单元的门级网表的神经表示,它与PE网表提供一对一的拓扑对应关系。我们利用神经孪生反向传播进行梯度计算,以确定对网络列表中的故障敏感的输入模式。我们的框架还支持对一批错误进行模式压缩。因此,使用所提出的框架可以实现gpu加速的测试模式生成,该框架可以潜在地检测人工智能加速器中难以检测和抗随机模式的故障。对4位、8位和16位定点加速器阵列的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural Test Generation for AI Accelerators using Neural Twins
We present a neural twin-based structural test pattern generation method for stuck-at faults in systolic array-based AI inferencing accelerators. The neural twin is a neural representation of the gate-level netlist of a processing element and it provides a one-to-one topological correspondence with the PE netlist. We leverage neural twin-enabled backpropagation for gradient computation to determine an input pattern that sensitizes a fault in the netlist. Our framework also supports pattern compaction for a batch of faults. Consequently, GPU-accelerated test-pattern generation is achieved with the proposed framework that can potentially detect hard-to-detect and random-pattern-resistant faults in AI accelerators. Experimental results for 4-bit, 8-bit, and 16-bit fixed-point accelerator arrays show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural Test Generation for AI Accelerators using Neural Twins Radiation-induced Effects on DMA Data Transfer in Reconfigurable Devices Functional and Timing Implications of Transient Faults in Critical Systems All Digital Low-Cost Built-in Defect Testing Strategy for Operational Amplifiers with High Coverage IOLTS 2022 Cover Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1