多模态非对称指数功率分布:在金融高频数据风险度量中的应用

Aymeric Thibault, P. Bondon
{"title":"多模态非对称指数功率分布:在金融高频数据风险度量中的应用","authors":"Aymeric Thibault, P. Bondon","doi":"10.23919/EUSIPCO.2017.8081378","DOIUrl":null,"url":null,"abstract":"Interest in risk measurement for high-frequency data has increased since the volume of high-frequency trading stepped up over the two last decades. This paper proposes a multimodal extension of the Exponential Power Distribution (EPD), called the Multimodal Asymmetric Exponential Power Distribution (MAEPD). We derive moments and we propose a convenient stochastic representation of the MAEPD. We establish consistency, asymptotic normality and efficiency of the maximum likelihood estimators (MLE). An application to risk measurement for high-frequency data is presented. An autoregressive moving average multiplicative component generalized autoregressive conditional heteroskedastic (ARMA-mcsGARCH) model is fitted to Financial Times Stock Exchange (FTSE) 100 intraday returns. Performances for Value-at-Risk (VaR) and Expected Shortfall (ES) estimation are evaluated. We show that the MAEPD outperforms commonly used distributions in risk measurement.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multimodal asymmetric exponential power distribution: Application to risk measurement for financial high-frequency data\",\"authors\":\"Aymeric Thibault, P. Bondon\",\"doi\":\"10.23919/EUSIPCO.2017.8081378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interest in risk measurement for high-frequency data has increased since the volume of high-frequency trading stepped up over the two last decades. This paper proposes a multimodal extension of the Exponential Power Distribution (EPD), called the Multimodal Asymmetric Exponential Power Distribution (MAEPD). We derive moments and we propose a convenient stochastic representation of the MAEPD. We establish consistency, asymptotic normality and efficiency of the maximum likelihood estimators (MLE). An application to risk measurement for high-frequency data is presented. An autoregressive moving average multiplicative component generalized autoregressive conditional heteroskedastic (ARMA-mcsGARCH) model is fitted to Financial Times Stock Exchange (FTSE) 100 intraday returns. Performances for Value-at-Risk (VaR) and Expected Shortfall (ES) estimation are evaluated. We show that the MAEPD outperforms commonly used distributions in risk measurement.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"08 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年里,高频交易的数量不断增加,人们对高频数据风险度量的兴趣也随之增加。本文提出了指数功率分布(EPD)的多模态扩展,称为多模态非对称指数功率分布(MAEPD)。我们推导了矩,并提出了MAEPD的一种方便的随机表示。建立了极大似然估计的相合性、渐近正态性和有效性。提出了一个在高频数据风险度量中的应用。利用自回归移动平均乘分量广义自回归条件异方差(ARMA-mcsGARCH)模型拟合金融时报证券交易所(FTSE) 100日内收益。评估了风险价值(VaR)和预期缺口(ES)估计的性能。我们表明MAEPD在风险度量中优于常用的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multimodal asymmetric exponential power distribution: Application to risk measurement for financial high-frequency data
Interest in risk measurement for high-frequency data has increased since the volume of high-frequency trading stepped up over the two last decades. This paper proposes a multimodal extension of the Exponential Power Distribution (EPD), called the Multimodal Asymmetric Exponential Power Distribution (MAEPD). We derive moments and we propose a convenient stochastic representation of the MAEPD. We establish consistency, asymptotic normality and efficiency of the maximum likelihood estimators (MLE). An application to risk measurement for high-frequency data is presented. An autoregressive moving average multiplicative component generalized autoregressive conditional heteroskedastic (ARMA-mcsGARCH) model is fitted to Financial Times Stock Exchange (FTSE) 100 intraday returns. Performances for Value-at-Risk (VaR) and Expected Shortfall (ES) estimation are evaluated. We show that the MAEPD outperforms commonly used distributions in risk measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1