温室小气候流动模拟:入口流动条件的影响

I. Janajreh, S. Raza, K. Kadi
{"title":"温室小气候流动模拟:入口流动条件的影响","authors":"I. Janajreh, S. Raza, K. Kadi","doi":"10.5383/IJTEE.17.01.002","DOIUrl":null,"url":null,"abstract":"Greenhouse (GH) has been demonstrated as a profitable technology for food production with low demand of irrigation water. In this work, a numerical model is developed to study the micro-climatic environmental conditions inside a greenhouse distillation system for optimize operation. The system performance (temperatures, flow velocities, relative humidity) is presented and improvement factors for the system performance are suggested. The result shows that the inlet velocity and plant transpiration have a more pronounced effect on the relative humidity than the incoming temperature variation. As temperature increases by 8Co the relative humidity decreases with few percentiles (~2%). When velocity varies between 0.2-0.7m/s, and within the diurnal operation of the GH, an increase of up to 5 points in the humidity is observed. Finally, when the transpiration increases from 0.2 to 1.2 g/m3 the relative humidity observes a drastic jump of over 15 points.","PeriodicalId":429709,"journal":{"name":"International Journal of Thermal and Environmental Engineering","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Greenhouse Microclimate Flow Simulation: Influence of Inlet Flow Conditions\",\"authors\":\"I. Janajreh, S. Raza, K. Kadi\",\"doi\":\"10.5383/IJTEE.17.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Greenhouse (GH) has been demonstrated as a profitable technology for food production with low demand of irrigation water. In this work, a numerical model is developed to study the micro-climatic environmental conditions inside a greenhouse distillation system for optimize operation. The system performance (temperatures, flow velocities, relative humidity) is presented and improvement factors for the system performance are suggested. The result shows that the inlet velocity and plant transpiration have a more pronounced effect on the relative humidity than the incoming temperature variation. As temperature increases by 8Co the relative humidity decreases with few percentiles (~2%). When velocity varies between 0.2-0.7m/s, and within the diurnal operation of the GH, an increase of up to 5 points in the humidity is observed. Finally, when the transpiration increases from 0.2 to 1.2 g/m3 the relative humidity observes a drastic jump of over 15 points.\",\"PeriodicalId\":429709,\"journal\":{\"name\":\"International Journal of Thermal and Environmental Engineering\",\"volume\":\"275 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5383/IJTEE.17.01.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5383/IJTEE.17.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

温室(GH)已被证明是一种具有较低灌溉用水需求的粮食生产技术。为了优化温室蒸馏系统的运行,建立了温室蒸馏系统内部小气候环境的数值模型。介绍了系统的性能(温度、流速、相对湿度),并提出了系统性能的改进因素。结果表明,进口速度和植物蒸腾作用对相对湿度的影响比进口温度变化更显著。当温度升高8Co时,相对湿度降低了几个百分点(~2%)。当风速在0.2-0.7m/s之间变化时,在GH的日运行范围内,观察到湿度增加了5个点。最后,当蒸腾从0.2 g/m3增加到1.2 g/m3时,相对湿度急剧上升超过15个点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Greenhouse Microclimate Flow Simulation: Influence of Inlet Flow Conditions
Greenhouse (GH) has been demonstrated as a profitable technology for food production with low demand of irrigation water. In this work, a numerical model is developed to study the micro-climatic environmental conditions inside a greenhouse distillation system for optimize operation. The system performance (temperatures, flow velocities, relative humidity) is presented and improvement factors for the system performance are suggested. The result shows that the inlet velocity and plant transpiration have a more pronounced effect on the relative humidity than the incoming temperature variation. As temperature increases by 8Co the relative humidity decreases with few percentiles (~2%). When velocity varies between 0.2-0.7m/s, and within the diurnal operation of the GH, an increase of up to 5 points in the humidity is observed. Finally, when the transpiration increases from 0.2 to 1.2 g/m3 the relative humidity observes a drastic jump of over 15 points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prospect of Renewable Energy due to COVID-19 and Opportunity for Transition to Future Fuels Heat Transfer Enhancement by Using Porous Heat Exchangers Heat Transfer Enhancement of Forced Convection in Horizontal Channel with Heated Block due to Oscillation of Incoming Flow Analysis of Ocean Thermal Energy Conversion Power Plant using Isobutane as the Working Fluid Efficient Residential Buildings in Hot and Humid Regions: The Case of Abu Dhabi, UAE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1