基于Romber算法和二次插值法对GM(1,1)进行优化

Bo Li, Shengrong Zhao, Ling Fang
{"title":"基于Romber算法和二次插值法对GM(1,1)进行优化","authors":"Bo Li, Shengrong Zhao, Ling Fang","doi":"10.1109/ICACIA.2009.5361136","DOIUrl":null,"url":null,"abstract":"This text analyzed the reason of generating error of GM (1, 1), from the integral calculus angle discrete GM (1, 1). A kind of method putting forward making use of Romberg integral calculus formula and quadratic interpolation method to construct the background value of the model, raised simulation and prediction precision of GM(1,1), and the actual example verify the feasibility and effectiveness of this method.","PeriodicalId":423210,"journal":{"name":"2009 International Conference on Apperceiving Computing and Intelligence Analysis","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimized GM (1, 1) based on Romber algorithm and quadratic interpolation method\",\"authors\":\"Bo Li, Shengrong Zhao, Ling Fang\",\"doi\":\"10.1109/ICACIA.2009.5361136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This text analyzed the reason of generating error of GM (1, 1), from the integral calculus angle discrete GM (1, 1). A kind of method putting forward making use of Romberg integral calculus formula and quadratic interpolation method to construct the background value of the model, raised simulation and prediction precision of GM(1,1), and the actual example verify the feasibility and effectiveness of this method.\",\"PeriodicalId\":423210,\"journal\":{\"name\":\"2009 International Conference on Apperceiving Computing and Intelligence Analysis\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Apperceiving Computing and Intelligence Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACIA.2009.5361136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Apperceiving Computing and Intelligence Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACIA.2009.5361136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文从积分角度分析了GM(1,1)产生误差的原因,提出了一种利用Romberg积分公式和二次插值法构造模型背景值的方法,提高了GM(1,1)的仿真和预测精度,并通过实例验证了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized GM (1, 1) based on Romber algorithm and quadratic interpolation method
This text analyzed the reason of generating error of GM (1, 1), from the integral calculus angle discrete GM (1, 1). A kind of method putting forward making use of Romberg integral calculus formula and quadratic interpolation method to construct the background value of the model, raised simulation and prediction precision of GM(1,1), and the actual example verify the feasibility and effectiveness of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cache replacement strategy for streaming media based on semantic mining A lock-free algorithm for union-find with deletion Optimized GM (1, 1) based on Romber algorithm and quadratic interpolation method Analysis of acupuncture point signal using Wavelet Transform and higher-order statistical method Distributed anomaly detection by model sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1