{"title":"文本到语音的非标准越南语单词检测与规范化","authors":"Huu-Tien Dang, Thi-Hai-Yen Vuong, X. Phan","doi":"10.1109/KSE56063.2022.9953791","DOIUrl":null,"url":null,"abstract":"Converting written texts into their spoken forms is an essential problem in any text-to-speech (TTS) systems. However, building an effective text normalization solution for a real-world TTS system face two main challenges: (1) the semantic ambiguity of non-standard words (NSWs), e.g., numbers, dates, ranges, scores, abbreviations, and (2) transforming NSWs into pronounceable syllables, such as URL, email address, hashtag, and contact name. In this paper, we propose a new two-phase normalization approach to deal with these challenges. First, a model-based tagger is designed to detect NSWs. Then, depending on NSW types, a rule-based normalizer expands those NSWs into their final verbal forms. We conducted three empirical experiments for NSW detection using Conditional Random Fields (CRFs), BiLSTM-CNN-CRF, and BERT-BiGRU-CRF models on a manually annotated dataset including 5819 sentences extracted from Vietnamese news articles. In the second phase, we propose a forward lexicon-based maximum matching algorithm to split down the hashtag, email, URL, and contact name. The experimental results of the tagging phase show that the average F1 scores of the BiLSTM-CNN-CRF and CRF models are above 90.00%, reaching the highest F1 of 95.00% with the BERT-BiGRU-CRF model. Overall, our approach has low sentence error rates, at 8.15% with CRF and 7.11% with BiLSTM-CNNCRF taggers, and only 6.67% with BERT-BiGRU-CRF tagger.","PeriodicalId":330865,"journal":{"name":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-Standard Vietnamese Word Detection and Normalization for Text–to–Speech\",\"authors\":\"Huu-Tien Dang, Thi-Hai-Yen Vuong, X. Phan\",\"doi\":\"10.1109/KSE56063.2022.9953791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Converting written texts into their spoken forms is an essential problem in any text-to-speech (TTS) systems. However, building an effective text normalization solution for a real-world TTS system face two main challenges: (1) the semantic ambiguity of non-standard words (NSWs), e.g., numbers, dates, ranges, scores, abbreviations, and (2) transforming NSWs into pronounceable syllables, such as URL, email address, hashtag, and contact name. In this paper, we propose a new two-phase normalization approach to deal with these challenges. First, a model-based tagger is designed to detect NSWs. Then, depending on NSW types, a rule-based normalizer expands those NSWs into their final verbal forms. We conducted three empirical experiments for NSW detection using Conditional Random Fields (CRFs), BiLSTM-CNN-CRF, and BERT-BiGRU-CRF models on a manually annotated dataset including 5819 sentences extracted from Vietnamese news articles. In the second phase, we propose a forward lexicon-based maximum matching algorithm to split down the hashtag, email, URL, and contact name. The experimental results of the tagging phase show that the average F1 scores of the BiLSTM-CNN-CRF and CRF models are above 90.00%, reaching the highest F1 of 95.00% with the BERT-BiGRU-CRF model. Overall, our approach has low sentence error rates, at 8.15% with CRF and 7.11% with BiLSTM-CNNCRF taggers, and only 6.67% with BERT-BiGRU-CRF tagger.\",\"PeriodicalId\":330865,\"journal\":{\"name\":\"2022 14th International Conference on Knowledge and Systems Engineering (KSE)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Knowledge and Systems Engineering (KSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE56063.2022.9953791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE56063.2022.9953791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Standard Vietnamese Word Detection and Normalization for Text–to–Speech
Converting written texts into their spoken forms is an essential problem in any text-to-speech (TTS) systems. However, building an effective text normalization solution for a real-world TTS system face two main challenges: (1) the semantic ambiguity of non-standard words (NSWs), e.g., numbers, dates, ranges, scores, abbreviations, and (2) transforming NSWs into pronounceable syllables, such as URL, email address, hashtag, and contact name. In this paper, we propose a new two-phase normalization approach to deal with these challenges. First, a model-based tagger is designed to detect NSWs. Then, depending on NSW types, a rule-based normalizer expands those NSWs into their final verbal forms. We conducted three empirical experiments for NSW detection using Conditional Random Fields (CRFs), BiLSTM-CNN-CRF, and BERT-BiGRU-CRF models on a manually annotated dataset including 5819 sentences extracted from Vietnamese news articles. In the second phase, we propose a forward lexicon-based maximum matching algorithm to split down the hashtag, email, URL, and contact name. The experimental results of the tagging phase show that the average F1 scores of the BiLSTM-CNN-CRF and CRF models are above 90.00%, reaching the highest F1 of 95.00% with the BERT-BiGRU-CRF model. Overall, our approach has low sentence error rates, at 8.15% with CRF and 7.11% with BiLSTM-CNNCRF taggers, and only 6.67% with BERT-BiGRU-CRF tagger.