基于子空间几何规划的CMOS运放功率优化方法

Wei Gao, R. Hornsey
{"title":"基于子空间几何规划的CMOS运放功率优化方法","authors":"Wei Gao, R. Hornsey","doi":"10.1109/DATE.2010.5457151","DOIUrl":null,"url":null,"abstract":"A new sub-space max-monomial modeling scheme for CMOS transistors in sub-micron technologies is proposed to improve the modeling accuracy. Major electrical parameters of CMOS transistors in each sub-space from the design space are modeled with max-monomials. This approach is demonstrated to have a better accuracy for sub-micron technologies than single-space models. Sub-space modeling based geometric programming power optimization has been successfully applied to three different op-amps in 0.18µm technology. HSPICE simulation results show that sub-space modeling based GP optimization can allow efficient and accurate analog design. Computational effort can be managed to an acceptable level when searching sub-spaces for transistors by using practical constraints. An efficient scheme in dealing with non-convex constraint inherent in Kirchhoff's voltage law is suggested in this paper. By using this scheme, the non-convex constraint, such as posynomial equality, can be relaxed to a convex constraint without affecting the result.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A power optimization method for CMOS Op-Amps using sub-space based geometric programming\",\"authors\":\"Wei Gao, R. Hornsey\",\"doi\":\"10.1109/DATE.2010.5457151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new sub-space max-monomial modeling scheme for CMOS transistors in sub-micron technologies is proposed to improve the modeling accuracy. Major electrical parameters of CMOS transistors in each sub-space from the design space are modeled with max-monomials. This approach is demonstrated to have a better accuracy for sub-micron technologies than single-space models. Sub-space modeling based geometric programming power optimization has been successfully applied to three different op-amps in 0.18µm technology. HSPICE simulation results show that sub-space modeling based GP optimization can allow efficient and accurate analog design. Computational effort can be managed to an acceptable level when searching sub-spaces for transistors by using practical constraints. An efficient scheme in dealing with non-convex constraint inherent in Kirchhoff's voltage law is suggested in this paper. By using this scheme, the non-convex constraint, such as posynomial equality, can be relaxed to a convex constraint without affecting the result.\",\"PeriodicalId\":432902,\"journal\":{\"name\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2010.5457151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5457151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

为了提高亚微米技术CMOS晶体管的建模精度,提出了一种新的子空间最大单项建模方案。从设计空间出发,利用极大单项式对各子空间中CMOS晶体管的主要电参数进行建模。这种方法被证明在亚微米技术上比单空间模型具有更好的精度。基于子空间建模的几何规划功率优化已成功应用于三种不同的0.18µm工艺的运放。HSPICE仿真结果表明,基于子空间建模的GP优化可以实现高效、精确的模拟设计。利用实际约束条件,在搜索晶体管子空间时,可以将计算量控制在可接受的水平。本文提出了一种处理基尔霍夫电压律所固有的非凸约束的有效方法。利用该格式,可以在不影响结果的情况下将多项式等式等非凸约束放宽为凸约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A power optimization method for CMOS Op-Amps using sub-space based geometric programming
A new sub-space max-monomial modeling scheme for CMOS transistors in sub-micron technologies is proposed to improve the modeling accuracy. Major electrical parameters of CMOS transistors in each sub-space from the design space are modeled with max-monomials. This approach is demonstrated to have a better accuracy for sub-micron technologies than single-space models. Sub-space modeling based geometric programming power optimization has been successfully applied to three different op-amps in 0.18µm technology. HSPICE simulation results show that sub-space modeling based GP optimization can allow efficient and accurate analog design. Computational effort can be managed to an acceptable level when searching sub-spaces for transistors by using practical constraints. An efficient scheme in dealing with non-convex constraint inherent in Kirchhoff's voltage law is suggested in this paper. By using this scheme, the non-convex constraint, such as posynomial equality, can be relaxed to a convex constraint without affecting the result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High temperature polymer capacitors for aerospace applications Control network generator for latency insensitive designs Low-complexity high throughput VLSI architecture of soft-output ML MIMO detector Energy-efficient real-time task scheduling with temperature-dependent leakage A GPU based implementation of Center-Surround Distribution Distance for feature extraction and matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1