{"title":"基于子空间几何规划的CMOS运放功率优化方法","authors":"Wei Gao, R. Hornsey","doi":"10.1109/DATE.2010.5457151","DOIUrl":null,"url":null,"abstract":"A new sub-space max-monomial modeling scheme for CMOS transistors in sub-micron technologies is proposed to improve the modeling accuracy. Major electrical parameters of CMOS transistors in each sub-space from the design space are modeled with max-monomials. This approach is demonstrated to have a better accuracy for sub-micron technologies than single-space models. Sub-space modeling based geometric programming power optimization has been successfully applied to three different op-amps in 0.18µm technology. HSPICE simulation results show that sub-space modeling based GP optimization can allow efficient and accurate analog design. Computational effort can be managed to an acceptable level when searching sub-spaces for transistors by using practical constraints. An efficient scheme in dealing with non-convex constraint inherent in Kirchhoff's voltage law is suggested in this paper. By using this scheme, the non-convex constraint, such as posynomial equality, can be relaxed to a convex constraint without affecting the result.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A power optimization method for CMOS Op-Amps using sub-space based geometric programming\",\"authors\":\"Wei Gao, R. Hornsey\",\"doi\":\"10.1109/DATE.2010.5457151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new sub-space max-monomial modeling scheme for CMOS transistors in sub-micron technologies is proposed to improve the modeling accuracy. Major electrical parameters of CMOS transistors in each sub-space from the design space are modeled with max-monomials. This approach is demonstrated to have a better accuracy for sub-micron technologies than single-space models. Sub-space modeling based geometric programming power optimization has been successfully applied to three different op-amps in 0.18µm technology. HSPICE simulation results show that sub-space modeling based GP optimization can allow efficient and accurate analog design. Computational effort can be managed to an acceptable level when searching sub-spaces for transistors by using practical constraints. An efficient scheme in dealing with non-convex constraint inherent in Kirchhoff's voltage law is suggested in this paper. By using this scheme, the non-convex constraint, such as posynomial equality, can be relaxed to a convex constraint without affecting the result.\",\"PeriodicalId\":432902,\"journal\":{\"name\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2010.5457151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5457151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A power optimization method for CMOS Op-Amps using sub-space based geometric programming
A new sub-space max-monomial modeling scheme for CMOS transistors in sub-micron technologies is proposed to improve the modeling accuracy. Major electrical parameters of CMOS transistors in each sub-space from the design space are modeled with max-monomials. This approach is demonstrated to have a better accuracy for sub-micron technologies than single-space models. Sub-space modeling based geometric programming power optimization has been successfully applied to three different op-amps in 0.18µm technology. HSPICE simulation results show that sub-space modeling based GP optimization can allow efficient and accurate analog design. Computational effort can be managed to an acceptable level when searching sub-spaces for transistors by using practical constraints. An efficient scheme in dealing with non-convex constraint inherent in Kirchhoff's voltage law is suggested in this paper. By using this scheme, the non-convex constraint, such as posynomial equality, can be relaxed to a convex constraint without affecting the result.