{"title":"非二进制量子计算的纠缠态制备","authors":"Kaitlin N. Smith, M. Thornton","doi":"10.1109/ICRC.2019.8914717","DOIUrl":null,"url":null,"abstract":"A common model of quantum computing is the gate model with binary basis states. Here, we consider the gate model of quantum computing with a non-binary radix resulting in more than two basis states to represent a quantum digit, or qudit. Quantum entanglement is an important phenomenon that is a critical component of quantum computation and communications algorithms. The generation and use of entanglement among radix-2 qubits is well-known and used often in quantum computing algorithms. Quantum entanglement exists in higher-radix systems as well although little is written regarding the generation of higher-radix entangled states. We provide background describing the feasibility of multiple-valued logic quantum systems and describe a new systematic method for generating maximally entangled states in quantum systems of dimension greater than two. This method is implemented in a synthesis algorithm that is described. Experimental results are included that demonstrate the transformations needed to create specific forms of maximally entangled quantum states.","PeriodicalId":297574,"journal":{"name":"2019 IEEE International Conference on Rebooting Computing (ICRC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Entangled State Preparation for Non-Binary Quantum Computing\",\"authors\":\"Kaitlin N. Smith, M. Thornton\",\"doi\":\"10.1109/ICRC.2019.8914717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common model of quantum computing is the gate model with binary basis states. Here, we consider the gate model of quantum computing with a non-binary radix resulting in more than two basis states to represent a quantum digit, or qudit. Quantum entanglement is an important phenomenon that is a critical component of quantum computation and communications algorithms. The generation and use of entanglement among radix-2 qubits is well-known and used often in quantum computing algorithms. Quantum entanglement exists in higher-radix systems as well although little is written regarding the generation of higher-radix entangled states. We provide background describing the feasibility of multiple-valued logic quantum systems and describe a new systematic method for generating maximally entangled states in quantum systems of dimension greater than two. This method is implemented in a synthesis algorithm that is described. Experimental results are included that demonstrate the transformations needed to create specific forms of maximally entangled quantum states.\",\"PeriodicalId\":297574,\"journal\":{\"name\":\"2019 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2019.8914717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2019.8914717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Entangled State Preparation for Non-Binary Quantum Computing
A common model of quantum computing is the gate model with binary basis states. Here, we consider the gate model of quantum computing with a non-binary radix resulting in more than two basis states to represent a quantum digit, or qudit. Quantum entanglement is an important phenomenon that is a critical component of quantum computation and communications algorithms. The generation and use of entanglement among radix-2 qubits is well-known and used often in quantum computing algorithms. Quantum entanglement exists in higher-radix systems as well although little is written regarding the generation of higher-radix entangled states. We provide background describing the feasibility of multiple-valued logic quantum systems and describe a new systematic method for generating maximally entangled states in quantum systems of dimension greater than two. This method is implemented in a synthesis algorithm that is described. Experimental results are included that demonstrate the transformations needed to create specific forms of maximally entangled quantum states.