{"title":"零电压过渡交错升压变换器及其在PFC中的应用","authors":"L. Barbosa","doi":"10.1155/2011/925618","DOIUrl":null,"url":null,"abstract":"An efficient power factor correction converter is presented. Two boost-topology switching cells are interleaved to minimize EMI while operating at lower switching frequency and soft switching to minimize losses. The result is a system with high conversion efficiency, able to operate in a pulse-width-modulation (PWM) way. Seven transition states of the ZVT converter in one switching period are described. In order to illustrate the operational principle key, implementation details, including simulations, are described. The validity of this converter is guaranteed by the obtained results.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Zero-Voltage-Transition Interleaved Boost Converter and Its Application to PFC\",\"authors\":\"L. Barbosa\",\"doi\":\"10.1155/2011/925618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient power factor correction converter is presented. Two boost-topology switching cells are interleaved to minimize EMI while operating at lower switching frequency and soft switching to minimize losses. The result is a system with high conversion efficiency, able to operate in a pulse-width-modulation (PWM) way. Seven transition states of the ZVT converter in one switching period are described. In order to illustrate the operational principle key, implementation details, including simulations, are described. The validity of this converter is guaranteed by the obtained results.\",\"PeriodicalId\":412593,\"journal\":{\"name\":\"Advances in Power Electronic\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Power Electronic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/925618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Power Electronic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/925618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Zero-Voltage-Transition Interleaved Boost Converter and Its Application to PFC
An efficient power factor correction converter is presented. Two boost-topology switching cells are interleaved to minimize EMI while operating at lower switching frequency and soft switching to minimize losses. The result is a system with high conversion efficiency, able to operate in a pulse-width-modulation (PWM) way. Seven transition states of the ZVT converter in one switching period are described. In order to illustrate the operational principle key, implementation details, including simulations, are described. The validity of this converter is guaranteed by the obtained results.