压电致动器电荷估计器的研制:径向基函数方法

M. Mohammadzaheri, Mohammadreza Emadi, M. Ghodsi, I. Bahadur, M. Zarog, A. Saleem
{"title":"压电致动器电荷估计器的研制:径向基函数方法","authors":"M. Mohammadzaheri, Mohammadreza Emadi, M. Ghodsi, I. Bahadur, M. Zarog, A. Saleem","doi":"10.4018/ijaiml.2020010103","DOIUrl":null,"url":null,"abstract":"Charge of a piezoelectric actuator is proportional to its displacement for a wide area of operating. Hence, a charge estimator can estimate displacement for such actuators. However, existing charge estimators take a sizable portion of the excitation voltage, i.e. voltage drop. Digital charge estimators have presented the smallest voltage drop. This article first investigates digital charge estimators and suggests a design guideline to (i) maximise accuracy and (ii) minimise the voltage drop. Digital charge estimators have a sensing resistor; an estimator with a constant resistance is shown to violate the design guideline; while, all existing digital charge estimators use one or a few intuitively chosen resistors. That is, existing estimators witness unnecessarily large inaccuracy and/or voltage drop. This research develops charge estimators with varying resistors, fulfilling the design guideline. Several methods are tested to estimates the sensing resistance based on operating conditions, and radial basis function networks models excel in terms of accuracy.","PeriodicalId":217541,"journal":{"name":"Int. J. Artif. Intell. Mach. Learn.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Development of a Charge Estimator for Piezoelectric Actuators: A Radial Basis Function Approach\",\"authors\":\"M. Mohammadzaheri, Mohammadreza Emadi, M. Ghodsi, I. Bahadur, M. Zarog, A. Saleem\",\"doi\":\"10.4018/ijaiml.2020010103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Charge of a piezoelectric actuator is proportional to its displacement for a wide area of operating. Hence, a charge estimator can estimate displacement for such actuators. However, existing charge estimators take a sizable portion of the excitation voltage, i.e. voltage drop. Digital charge estimators have presented the smallest voltage drop. This article first investigates digital charge estimators and suggests a design guideline to (i) maximise accuracy and (ii) minimise the voltage drop. Digital charge estimators have a sensing resistor; an estimator with a constant resistance is shown to violate the design guideline; while, all existing digital charge estimators use one or a few intuitively chosen resistors. That is, existing estimators witness unnecessarily large inaccuracy and/or voltage drop. This research develops charge estimators with varying resistors, fulfilling the design guideline. Several methods are tested to estimates the sensing resistance based on operating conditions, and radial basis function networks models excel in terms of accuracy.\",\"PeriodicalId\":217541,\"journal\":{\"name\":\"Int. J. Artif. Intell. Mach. Learn.\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Mach. Learn.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijaiml.2020010103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaiml.2020010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

压电致动器的电荷与它在大范围内的位移成正比。因此,电荷估计器可以估计这种致动器的位移。然而,现有的电荷估计器占用了相当大一部分激励电压,即电压降。数字电荷估计器的电压降最小。本文首先研究了数字电荷估计器,并提出了一种设计指南,以(i)最大化精度和(ii)最小化电压降。数字电荷估计器有一个传感电阻;具有恒定电阻的估计器违反了设计准则;然而,所有现有的数字电荷估计器都使用一个或几个直观选择的电阻。也就是说,现有的估计器见证了不必要的大误差和/或电压降。本研究开发了具有可变电阻的电荷估计器,实现了设计原则。试验了几种基于工况估计感应电阻的方法,结果表明,径向基函数网络模型在精度方面表现优异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Charge Estimator for Piezoelectric Actuators: A Radial Basis Function Approach
Charge of a piezoelectric actuator is proportional to its displacement for a wide area of operating. Hence, a charge estimator can estimate displacement for such actuators. However, existing charge estimators take a sizable portion of the excitation voltage, i.e. voltage drop. Digital charge estimators have presented the smallest voltage drop. This article first investigates digital charge estimators and suggests a design guideline to (i) maximise accuracy and (ii) minimise the voltage drop. Digital charge estimators have a sensing resistor; an estimator with a constant resistance is shown to violate the design guideline; while, all existing digital charge estimators use one or a few intuitively chosen resistors. That is, existing estimators witness unnecessarily large inaccuracy and/or voltage drop. This research develops charge estimators with varying resistors, fulfilling the design guideline. Several methods are tested to estimates the sensing resistance based on operating conditions, and radial basis function networks models excel in terms of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and Implications of Adopting AI and Machine Learning in Marketing, Servicing, and Communications Technology Survey of Recent Applications of Artificial Intelligence for Detection and Analysis of COVID-19 and Other Infectious Diseases Boosting Convolutional Neural Networks Using a Bidirectional Fast Gated Recurrent Unit for Text Categorization Using Open-Source Software for Business, Urban, and Other Applications of Deep Neural Networks, Machine Learning, and Data Analytics Tools Autonomous Navigation Using Deep Reinforcement Learning in ROS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1