运行监控中动态人机任务分配自主管理器的开发

Mary E. Frame, A. S. Boydstun, Jennifer S. Lopez
{"title":"运行监控中动态人机任务分配自主管理器的开发","authors":"Mary E. Frame, A. S. Boydstun, Jennifer S. Lopez","doi":"10.1109/ICHMS49158.2020.9209414","DOIUrl":null,"url":null,"abstract":"Surveillance environments require simultaneous performance of multiple complex tasks. These increasing demands require the effective leveraging of automated teammates. However, the degree of assistance autonomous systems can provide is still limited for cognitively complex tasks. Balancing the workload requires intelligent and dynamic redistribution of tasks between humans and autonomy. To address this challenge of maintaining performance in a Human-Machine Team (HMT), we developed an Autonomous Manager (AM) to dynamically redistribute tasks between a human and automation based on task performance and physiological indicators of workload. We tested the AM's decision logic across multiple scenarios using simulation, allowing us to examine the benefits and limitations of the AM.","PeriodicalId":132917,"journal":{"name":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Development of an Autonomous Manager for Dynamic Human-Machine Task Allocation in Operational Surveillance\",\"authors\":\"Mary E. Frame, A. S. Boydstun, Jennifer S. Lopez\",\"doi\":\"10.1109/ICHMS49158.2020.9209414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surveillance environments require simultaneous performance of multiple complex tasks. These increasing demands require the effective leveraging of automated teammates. However, the degree of assistance autonomous systems can provide is still limited for cognitively complex tasks. Balancing the workload requires intelligent and dynamic redistribution of tasks between humans and autonomy. To address this challenge of maintaining performance in a Human-Machine Team (HMT), we developed an Autonomous Manager (AM) to dynamically redistribute tasks between a human and automation based on task performance and physiological indicators of workload. We tested the AM's decision logic across multiple scenarios using simulation, allowing us to examine the benefits and limitations of the AM.\",\"PeriodicalId\":132917,\"journal\":{\"name\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHMS49158.2020.9209414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHMS49158.2020.9209414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

监视环境需要同时执行多个复杂任务。这些不断增长的需求需要有效地利用自动化团队。然而,对于复杂的认知任务,自主系统所能提供的辅助程度仍然有限。平衡工作负载需要在人类和自治之间智能和动态地重新分配任务。为了解决在人机团队(HMT)中维持性能的挑战,我们开发了一个自治管理器(AM),可以根据任务性能和工作负载的生理指标在人和自动化之间动态地重新分配任务。我们使用模拟测试了AM在多个场景下的决策逻辑,使我们能够检查AM的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an Autonomous Manager for Dynamic Human-Machine Task Allocation in Operational Surveillance
Surveillance environments require simultaneous performance of multiple complex tasks. These increasing demands require the effective leveraging of automated teammates. However, the degree of assistance autonomous systems can provide is still limited for cognitively complex tasks. Balancing the workload requires intelligent and dynamic redistribution of tasks between humans and autonomy. To address this challenge of maintaining performance in a Human-Machine Team (HMT), we developed an Autonomous Manager (AM) to dynamically redistribute tasks between a human and automation based on task performance and physiological indicators of workload. We tested the AM's decision logic across multiple scenarios using simulation, allowing us to examine the benefits and limitations of the AM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite Time Sliding Mode Control of Connected Vehicle Platoons Guaranteeing String Stability User detection of threats with different security measures Driver Hazard Response When Processing On-road and In-vehicle Messaging of Non-Safety-Related Information Towards trustworthiness and transparency in social human-robot interaction Collaborative Environmental Monitoring through Teams of Trusted IoT devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1