不确定图的高效概率桁架索引

Zitang Sun, Xin Huang, Jianliang Xu, F. Bonchi
{"title":"不确定图的高效概率桁架索引","authors":"Zitang Sun, Xin Huang, Jianliang Xu, F. Bonchi","doi":"10.1145/3442381.3449976","DOIUrl":null,"url":null,"abstract":"Networks in many real-world applications come with an inherent uncertainty in their structure, due to e.g., noisy measurements, inference and prediction models, or for privacy purposes. Modeling and analyzing uncertain graphs has attracted a great deal of attention. Among the various graph analytic tasks studied, the extraction of dense substructures, such as cores or trusses, has a central role. In this paper, we study the problem of (k, γ)-truss indexing and querying over an uncertain graph . A (k, γ)-truss is the largest subgraph of , such that the probability of each edge being contained in at least k − 2 triangles is no less than γ. Our first proposal, CPT-index, keeps all the (k, γ)-trusses: retrieval for any given k and γ can be executed in an optimal linear time w.r.t. the graph size of the queried (k, γ)-truss. We develop a bottom-up CPT-indexconstruction scheme and an improved algorithm for fast CPT-indexconstruction using top-down graph partitions. For trading off between (k, γ)-truss offline indexing and online querying, we further develop an approximate indexing approach (ϵ, Δr)-APXequipped with two parameters, ϵ and Δr, that govern tolerated errors. Extensive experiments using large-scale uncertain graphs with 261 million edges validate the efficiency of our proposed indexing and querying algorithms against state-of-the-art methods.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Efficient Probabilistic Truss Indexing on Uncertain Graphs\",\"authors\":\"Zitang Sun, Xin Huang, Jianliang Xu, F. Bonchi\",\"doi\":\"10.1145/3442381.3449976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networks in many real-world applications come with an inherent uncertainty in their structure, due to e.g., noisy measurements, inference and prediction models, or for privacy purposes. Modeling and analyzing uncertain graphs has attracted a great deal of attention. Among the various graph analytic tasks studied, the extraction of dense substructures, such as cores or trusses, has a central role. In this paper, we study the problem of (k, γ)-truss indexing and querying over an uncertain graph . A (k, γ)-truss is the largest subgraph of , such that the probability of each edge being contained in at least k − 2 triangles is no less than γ. Our first proposal, CPT-index, keeps all the (k, γ)-trusses: retrieval for any given k and γ can be executed in an optimal linear time w.r.t. the graph size of the queried (k, γ)-truss. We develop a bottom-up CPT-indexconstruction scheme and an improved algorithm for fast CPT-indexconstruction using top-down graph partitions. For trading off between (k, γ)-truss offline indexing and online querying, we further develop an approximate indexing approach (ϵ, Δr)-APXequipped with two parameters, ϵ and Δr, that govern tolerated errors. Extensive experiments using large-scale uncertain graphs with 261 million edges validate the efficiency of our proposed indexing and querying algorithms against state-of-the-art methods.\",\"PeriodicalId\":106672,\"journal\":{\"name\":\"Proceedings of the Web Conference 2021\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442381.3449976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在许多现实世界的应用中,网络在其结构中具有固有的不确定性,例如,由于噪声测量,推理和预测模型,或出于隐私目的。不确定图的建模和分析已经引起了人们的广泛关注。在所研究的各种图分析任务中,密集子结构(如核心或桁架)的提取具有中心作用。本文研究了不确定图上(k, γ)-桁架索引和查询问题。A (k, γ)-truss是的最大子图,使得每条边被包含在至少k−2个三角形中的概率不小于γ。我们的第一个建议,CPT-index,保留了所有的(k, γ)-桁架:对于任何给定的k和γ的检索可以在最优线性时间内执行,而不是查询的(k, γ)-桁架的图大小。提出了一种自底向上的cpt索引构建方案和一种改进的基于自顶向下图分区的cpt索引快速构建算法。为了在(k, γ)桁架离线索引和在线查询之间进行权衡,我们进一步开发了一种近似索引方法(λ, Δr)- apx配备了两个参数,λ和Δr,用于控制可容忍误差。使用具有2.61亿个边的大规模不确定图的广泛实验验证了我们提出的索引和查询算法与最先进方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Probabilistic Truss Indexing on Uncertain Graphs
Networks in many real-world applications come with an inherent uncertainty in their structure, due to e.g., noisy measurements, inference and prediction models, or for privacy purposes. Modeling and analyzing uncertain graphs has attracted a great deal of attention. Among the various graph analytic tasks studied, the extraction of dense substructures, such as cores or trusses, has a central role. In this paper, we study the problem of (k, γ)-truss indexing and querying over an uncertain graph . A (k, γ)-truss is the largest subgraph of , such that the probability of each edge being contained in at least k − 2 triangles is no less than γ. Our first proposal, CPT-index, keeps all the (k, γ)-trusses: retrieval for any given k and γ can be executed in an optimal linear time w.r.t. the graph size of the queried (k, γ)-truss. We develop a bottom-up CPT-indexconstruction scheme and an improved algorithm for fast CPT-indexconstruction using top-down graph partitions. For trading off between (k, γ)-truss offline indexing and online querying, we further develop an approximate indexing approach (ϵ, Δr)-APXequipped with two parameters, ϵ and Δr, that govern tolerated errors. Extensive experiments using large-scale uncertain graphs with 261 million edges validate the efficiency of our proposed indexing and querying algorithms against state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service Outlier-Resilient Web Service QoS Prediction Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy Unsupervised Lifelong Learning with Curricula The Structure of Toxic Conversations on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1