机器人机械臂在不同环境下的自适应控制

Jiacheng Chen, G. Tao
{"title":"机器人机械臂在不同环境下的自适应控制","authors":"Jiacheng Chen, G. Tao","doi":"10.1109/sieds55548.2022.9799418","DOIUrl":null,"url":null,"abstract":"This paper studies the multiple-model based adaptive control of a robot manipulator moving in varying environments. The research problem is divided into two parts: the modeling of the system consisting of the robot manipulator and the varying environment, and the multiple-model based adaptive control of the robot manipulator. This paper considers the added mass, added moment of inertia, drag, and buoyancy as the environmental factors. In these dynamic models, the environmental factors and the mass, moment of inertia, and gravity of the robot are unknown parameters. By the linearity in the parameters property, we can write these parameters independently of the robot joint variables and thus can be estimated using an adaptive control law. After obtaining the system model, we adopt a multiple-model based adaptive control scheme. When the model of the robot changes, the parameter estimates can rapidly convert to a relatively closer one for the new true values. With a multiple-model based adaptive controller, the asymptotic tracking of the robot and the parameter boundedness are achieved, and the tracking is not disturbed by the variance of the environment parameters in the multiple model control case, which has better performance than the single model case.","PeriodicalId":286724,"journal":{"name":"2022 Systems and Information Engineering Design Symposium (SIEDS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive Control of Robot Manipulators in Varying Environments\",\"authors\":\"Jiacheng Chen, G. Tao\",\"doi\":\"10.1109/sieds55548.2022.9799418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the multiple-model based adaptive control of a robot manipulator moving in varying environments. The research problem is divided into two parts: the modeling of the system consisting of the robot manipulator and the varying environment, and the multiple-model based adaptive control of the robot manipulator. This paper considers the added mass, added moment of inertia, drag, and buoyancy as the environmental factors. In these dynamic models, the environmental factors and the mass, moment of inertia, and gravity of the robot are unknown parameters. By the linearity in the parameters property, we can write these parameters independently of the robot joint variables and thus can be estimated using an adaptive control law. After obtaining the system model, we adopt a multiple-model based adaptive control scheme. When the model of the robot changes, the parameter estimates can rapidly convert to a relatively closer one for the new true values. With a multiple-model based adaptive controller, the asymptotic tracking of the robot and the parameter boundedness are achieved, and the tracking is not disturbed by the variance of the environment parameters in the multiple model control case, which has better performance than the single model case.\",\"PeriodicalId\":286724,\"journal\":{\"name\":\"2022 Systems and Information Engineering Design Symposium (SIEDS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Systems and Information Engineering Design Symposium (SIEDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/sieds55548.2022.9799418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Systems and Information Engineering Design Symposium (SIEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sieds55548.2022.9799418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了基于多模型的机器人机械手在不同环境下的自适应控制问题。研究问题分为两部分:由机械手和变化环境组成的系统建模和基于多模型的机械手自适应控制。本文考虑了附加质量、附加惯性矩、阻力和浮力等环境因素。在这些动力学模型中,环境因素以及机器人的质量、转动惯量和重力都是未知参数。利用参数的线性特性,我们可以独立于机器人关节变量来编写这些参数,从而可以使用自适应控制律进行估计。在得到系统模型后,采用了基于多模型的自适应控制方案。当机器人模型发生变化时,参数估计可以迅速转换为相对接近新的真值。采用基于多模型的自适应控制器,实现了机器人的渐近跟踪和参数有界性,并且在多模型控制情况下跟踪不受环境参数变化的干扰,比单模型控制情况具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Control of Robot Manipulators in Varying Environments
This paper studies the multiple-model based adaptive control of a robot manipulator moving in varying environments. The research problem is divided into two parts: the modeling of the system consisting of the robot manipulator and the varying environment, and the multiple-model based adaptive control of the robot manipulator. This paper considers the added mass, added moment of inertia, drag, and buoyancy as the environmental factors. In these dynamic models, the environmental factors and the mass, moment of inertia, and gravity of the robot are unknown parameters. By the linearity in the parameters property, we can write these parameters independently of the robot joint variables and thus can be estimated using an adaptive control law. After obtaining the system model, we adopt a multiple-model based adaptive control scheme. When the model of the robot changes, the parameter estimates can rapidly convert to a relatively closer one for the new true values. With a multiple-model based adaptive controller, the asymptotic tracking of the robot and the parameter boundedness are achieved, and the tracking is not disturbed by the variance of the environment parameters in the multiple model control case, which has better performance than the single model case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Linville Creek Bridge: A Case Study of Design Thinking in Structural Engineering Convergence Across Behavioral and Self-report Measures Evaluating Individuals' Trust in an Autonomous Golf Cart Investigating the Illicit Trade of Cultural Property with an Automated Data Pipeline Architecture Investigating Disinformation Through the Lens of Mass Media: A System Design Dynamic Coal Production Line: Plant Design and Analysis Tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1