非参数运动模型

Ling-yu Duan, Mingliang Xu, Q. Tian, Changsheng Xu
{"title":"非参数运动模型","authors":"Ling-yu Duan, Mingliang Xu, Q. Tian, Changsheng Xu","doi":"10.1145/1027527.1027700","DOIUrl":null,"url":null,"abstract":"Motion information is a powerful cue for visual perception. In the context of video indexing and retrieval, motion content serves as a useful source for compact video representation. There has been a lot of literature about parametric motion models. However, it is hard to secure a proper parametric assumption in a wide range of video scenarios. Diverse camera shots and frequent occurrences of improper optical flow estimation or block matching motivate us to develop nonparametric motion models. In this demonstration, we present a novel nonparametric motion model. The unique features mainly include: 1) Instead of computationally expensive and vulnerable parametric regression our proposed model bases the motion characterization on the classification of motion patterns; 2) we employ machine learning to capture the knowledge of recognizing camera motion patterns from bad motion vector fields (MVF); and 3) with the mean shift filtering our proposed motion representation elegantly incorporates the spatial-range information for noise removal and discontinuity preserving smoothing of MVF. Promising results have been achieved on two tasks: 1) camera motion pattern recognition on 23191 MVFs and 2) recognition of the intensity of motion activity on 622 video segments culled from the MPEG-7 dataset.","PeriodicalId":292207,"journal":{"name":"MULTIMEDIA '04","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonparametric motion model\",\"authors\":\"Ling-yu Duan, Mingliang Xu, Q. Tian, Changsheng Xu\",\"doi\":\"10.1145/1027527.1027700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motion information is a powerful cue for visual perception. In the context of video indexing and retrieval, motion content serves as a useful source for compact video representation. There has been a lot of literature about parametric motion models. However, it is hard to secure a proper parametric assumption in a wide range of video scenarios. Diverse camera shots and frequent occurrences of improper optical flow estimation or block matching motivate us to develop nonparametric motion models. In this demonstration, we present a novel nonparametric motion model. The unique features mainly include: 1) Instead of computationally expensive and vulnerable parametric regression our proposed model bases the motion characterization on the classification of motion patterns; 2) we employ machine learning to capture the knowledge of recognizing camera motion patterns from bad motion vector fields (MVF); and 3) with the mean shift filtering our proposed motion representation elegantly incorporates the spatial-range information for noise removal and discontinuity preserving smoothing of MVF. Promising results have been achieved on two tasks: 1) camera motion pattern recognition on 23191 MVFs and 2) recognition of the intensity of motion activity on 622 video segments culled from the MPEG-7 dataset.\",\"PeriodicalId\":292207,\"journal\":{\"name\":\"MULTIMEDIA '04\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MULTIMEDIA '04\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1027527.1027700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1027527.1027700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

运动信息是视觉感知的有力线索。在视频索引和检索的背景下,运动内容是压缩视频表示的有用来源。有很多关于参数化运动模型的文献。然而,在广泛的视频场景中,很难保证一个适当的参数假设。不同的镜头和频繁出现的不正确的光流估计或块匹配促使我们开发非参数运动模型。在这个演示中,我们提出了一个新的非参数运动模型。该模型的独特之处在于:1)采用基于运动模式分类的运动表征方法,取代了计算量大、易受攻击的参数回归方法;2)利用机器学习从不良运动矢量场(MVF)中获取识别相机运动模式的知识;3)通过均值移位滤波,我们提出的运动表示优雅地融合了空间距离信息,用于去除噪声和保持MVF的不连续平滑。在两个任务上取得了令人满意的结果:1)23191个MVFs的摄像机运动模式识别和2)从MPEG-7数据集中挑选的622个视频片段的运动活动强度识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonparametric motion model
Motion information is a powerful cue for visual perception. In the context of video indexing and retrieval, motion content serves as a useful source for compact video representation. There has been a lot of literature about parametric motion models. However, it is hard to secure a proper parametric assumption in a wide range of video scenarios. Diverse camera shots and frequent occurrences of improper optical flow estimation or block matching motivate us to develop nonparametric motion models. In this demonstration, we present a novel nonparametric motion model. The unique features mainly include: 1) Instead of computationally expensive and vulnerable parametric regression our proposed model bases the motion characterization on the classification of motion patterns; 2) we employ machine learning to capture the knowledge of recognizing camera motion patterns from bad motion vector fields (MVF); and 3) with the mean shift filtering our proposed motion representation elegantly incorporates the spatial-range information for noise removal and discontinuity preserving smoothing of MVF. Promising results have been achieved on two tasks: 1) camera motion pattern recognition on 23191 MVFs and 2) recognition of the intensity of motion activity on 622 video segments culled from the MPEG-7 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Context for semantic metadata Collusion attack on a multi-key secure video proxy scheme PLSA-based image auto-annotation: constraining the latent space The relative effectiveness of concept-based versus content-based video retrieval LEMUR: robotic musical instruments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1