感应电机的无模型人工神经网络

Margarita Norambuena, Danilo Galvez
{"title":"感应电机的无模型人工神经网络","authors":"Margarita Norambuena, Danilo Galvez","doi":"10.1109/CPERE56564.2023.10119541","DOIUrl":null,"url":null,"abstract":"This paper presents the design, training, and implementation of a Feed-Forward Neural Network based on Model-Free Predictive Torque Control (MF-PTC) to control an Induction Machine (IM) powered by a two-level Voltage Source Inverter (2L-VSI). This control uses an algorithm capable of estimating the dynamic behavior of an IM without having a detailed knowledge of the system using the past measurements of the control variables (stator currents and flux) and input variables (stator voltages). With this approach, it is possible to design a neural network that mimics the behavior of this control just by measuring the current and estimating the flux. The control topology, neural network architecture, network training, and implementation are detailed in this work. Simulation results are presented for different operating points of the machine to validate the performance of the proposed strategy.","PeriodicalId":169048,"journal":{"name":"2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Free Artificial Neural Network for an Induction Machine\",\"authors\":\"Margarita Norambuena, Danilo Galvez\",\"doi\":\"10.1109/CPERE56564.2023.10119541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design, training, and implementation of a Feed-Forward Neural Network based on Model-Free Predictive Torque Control (MF-PTC) to control an Induction Machine (IM) powered by a two-level Voltage Source Inverter (2L-VSI). This control uses an algorithm capable of estimating the dynamic behavior of an IM without having a detailed knowledge of the system using the past measurements of the control variables (stator currents and flux) and input variables (stator voltages). With this approach, it is possible to design a neural network that mimics the behavior of this control just by measuring the current and estimating the flux. The control topology, neural network architecture, network training, and implementation are detailed in this work. Simulation results are presented for different operating points of the machine to validate the performance of the proposed strategy.\",\"PeriodicalId\":169048,\"journal\":{\"name\":\"2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPERE56564.2023.10119541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPERE56564.2023.10119541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于无模型预测转矩控制(MF-PTC)的前馈神经网络的设计、训练和实现,以控制由两电平电压源逆变器(2L-VSI)供电的感应电机(IM)。这种控制使用了一种算法,能够在不需要详细了解系统的情况下,使用过去测量的控制变量(定子电流和磁通)和输入变量(定子电压)来估计IM的动态行为。有了这种方法,就有可能设计一个神经网络,通过测量电流和估计通量来模仿这种控制的行为。本文详细介绍了控制拓扑、神经网络结构、网络训练和实现。通过对机器不同工作点的仿真,验证了所提策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model Free Artificial Neural Network for an Induction Machine
This paper presents the design, training, and implementation of a Feed-Forward Neural Network based on Model-Free Predictive Torque Control (MF-PTC) to control an Induction Machine (IM) powered by a two-level Voltage Source Inverter (2L-VSI). This control uses an algorithm capable of estimating the dynamic behavior of an IM without having a detailed knowledge of the system using the past measurements of the control variables (stator currents and flux) and input variables (stator voltages). With this approach, it is possible to design a neural network that mimics the behavior of this control just by measuring the current and estimating the flux. The control topology, neural network architecture, network training, and implementation are detailed in this work. Simulation results are presented for different operating points of the machine to validate the performance of the proposed strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Maximum-Power-Point Tracking Algorithm using Voltage Sweep and P & O for T-Source Inverter PV Applications Numerical Evaluation of Overall Efficiency for Solar Photovoltaic and Thermal Hybrid System Model Free Artificial Neural Network for an Induction Machine Optimized Inter-Turn Short Circuit Fault Diagnosis for Induction Motors using Neural Networks with LeLeRU Weighting-Factorless Sequential Model Predictive Torque Control of a Six-Phase AC Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1