微处理器安全中的容错技术

Vinay B. Y. Kumar, S. Deb, Rupesh Kumar, Mustafa Khairallah, A. Chattopadhyay, A. Mendelson
{"title":"微处理器安全中的容错技术","authors":"Vinay B. Y. Kumar, S. Deb, Rupesh Kumar, Mustafa Khairallah, A. Chattopadhyay, A. Mendelson","doi":"10.1109/ATS47505.2019.00015","DOIUrl":null,"url":null,"abstract":"The growing threat of various attacks on modern microprocessors and systems calls for major design overhauls ranging from plugging micro-architectural side channels such as due to speculative execution to implementing cryptographic accelerators for side-channel and fault attack resistance. In this paper, we suggest to focus on the similarities and the differences between fault tolerance techniques and countermeasures against attacks on security sensitive systems. Modern digital circuits and systems use a diverse set of techniques to ensure operational correctness in the presence of faults. From a security perspective, the goal is to ensure a set of stated security properties hold in the presence of 'security faults' (extending the notion of conventional faults to include injected faults as well as vulnerabilities such as passive side-channels). A point of note here is that under some security faults, the operational correctness may not be compromised. This paper advocates the re-purposing of some of the known fault tolerance techniques, and show how those can be useful for enhancing security in the presence of active side-channel attacks. As a simple illustration of these ideas, we present an experimental case study in fortifying a cryptographic sub-component of a RISC-V based secure system-on-chip, against a formidable fault attack called SIFA.","PeriodicalId":258824,"journal":{"name":"2019 IEEE 28th Asian Test Symposium (ATS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recruiting Fault Tolerance Techniques for Microprocessor Security\",\"authors\":\"Vinay B. Y. Kumar, S. Deb, Rupesh Kumar, Mustafa Khairallah, A. Chattopadhyay, A. Mendelson\",\"doi\":\"10.1109/ATS47505.2019.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing threat of various attacks on modern microprocessors and systems calls for major design overhauls ranging from plugging micro-architectural side channels such as due to speculative execution to implementing cryptographic accelerators for side-channel and fault attack resistance. In this paper, we suggest to focus on the similarities and the differences between fault tolerance techniques and countermeasures against attacks on security sensitive systems. Modern digital circuits and systems use a diverse set of techniques to ensure operational correctness in the presence of faults. From a security perspective, the goal is to ensure a set of stated security properties hold in the presence of 'security faults' (extending the notion of conventional faults to include injected faults as well as vulnerabilities such as passive side-channels). A point of note here is that under some security faults, the operational correctness may not be compromised. This paper advocates the re-purposing of some of the known fault tolerance techniques, and show how those can be useful for enhancing security in the presence of active side-channel attacks. As a simple illustration of these ideas, we present an experimental case study in fortifying a cryptographic sub-component of a RISC-V based secure system-on-chip, against a formidable fault attack called SIFA.\",\"PeriodicalId\":258824,\"journal\":{\"name\":\"2019 IEEE 28th Asian Test Symposium (ATS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 28th Asian Test Symposium (ATS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS47505.2019.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th Asian Test Symposium (ATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS47505.2019.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对现代微处理器和系统的各种攻击日益增长的威胁要求进行重大设计检修,从堵塞微架构侧通道(如由于推测执行)到实现用于侧通道和故障攻击抵抗的加密加速器。在本文中,我们建议关注容错技术与针对安全敏感系统攻击的对策之间的异同。现代数字电路和系统使用多种技术来确保在出现故障时操作的正确性。从安全的角度来看,目标是确保在存在“安全错误”(将常规错误的概念扩展为包括注入错误以及诸如被动侧通道之类的漏洞)的情况下保持一组声明的安全属性。这里需要注意的一点是,在某些安全性错误下,操作的正确性可能不会受到影响。本文提倡重新利用一些已知的容错技术,并展示了这些技术如何在存在主动侧信道攻击时增强安全性。作为这些想法的简单说明,我们提出了一个实验案例研究,以加强基于RISC-V的安全片上系统的加密子组件,以抵御强大的称为SIFA的故障攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recruiting Fault Tolerance Techniques for Microprocessor Security
The growing threat of various attacks on modern microprocessors and systems calls for major design overhauls ranging from plugging micro-architectural side channels such as due to speculative execution to implementing cryptographic accelerators for side-channel and fault attack resistance. In this paper, we suggest to focus on the similarities and the differences between fault tolerance techniques and countermeasures against attacks on security sensitive systems. Modern digital circuits and systems use a diverse set of techniques to ensure operational correctness in the presence of faults. From a security perspective, the goal is to ensure a set of stated security properties hold in the presence of 'security faults' (extending the notion of conventional faults to include injected faults as well as vulnerabilities such as passive side-channels). A point of note here is that under some security faults, the operational correctness may not be compromised. This paper advocates the re-purposing of some of the known fault tolerance techniques, and show how those can be useful for enhancing security in the presence of active side-channel attacks. As a simple illustration of these ideas, we present an experimental case study in fortifying a cryptographic sub-component of a RISC-V based secure system-on-chip, against a formidable fault attack called SIFA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iterative Parallel Test to Detect and Diagnose Multiple Defects for Digital Microfluidic Biochip Recruiting Fault Tolerance Techniques for Microprocessor Security Can Monitoring System State + Counting Custom Instruction Sequences Aid Malware Detection? Design of a Sextuple Cross-Coupled SRAM Cell with Optimized Access Operations for Highly Reliable Terrestrial Applications ATS 2019 Sponsors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1