利用因果效应对高阶突变体进行有效采样

Saeyoon Oh, Seongmin Lee, S. Yoo
{"title":"利用因果效应对高阶突变体进行有效采样","authors":"Saeyoon Oh, Seongmin Lee, S. Yoo","doi":"10.1109/ICSTW52544.2021.00017","DOIUrl":null,"url":null,"abstract":"Higher Order Mutation (HOM) has been proposed to avoid equivalent mutants and improve the scalability of mutation testing, but generating useful HOMs remain an expensive search problem on its own. We propose a new approach to generate Strongly Subsuming Higher Order Mutants (SSHOM) using a recently introduced Causal Program Dependence Analysis (CPDA). CPDA itself is based on program mutation, and provides quantitative estimation of how often a change of the value of a program element will cause a value change of another program element. Our SSHOM generation approach chooses pairs of program elements using heuristics based on CPDA analysis, performs First Order Mutation to the chosen pairs, and generates an HOM by combining two FOMs.","PeriodicalId":371680,"journal":{"name":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effectively Sampling Higher Order Mutants Using Causal Effect\",\"authors\":\"Saeyoon Oh, Seongmin Lee, S. Yoo\",\"doi\":\"10.1109/ICSTW52544.2021.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher Order Mutation (HOM) has been proposed to avoid equivalent mutants and improve the scalability of mutation testing, but generating useful HOMs remain an expensive search problem on its own. We propose a new approach to generate Strongly Subsuming Higher Order Mutants (SSHOM) using a recently introduced Causal Program Dependence Analysis (CPDA). CPDA itself is based on program mutation, and provides quantitative estimation of how often a change of the value of a program element will cause a value change of another program element. Our SSHOM generation approach chooses pairs of program elements using heuristics based on CPDA analysis, performs First Order Mutation to the chosen pairs, and generates an HOM by combining two FOMs.\",\"PeriodicalId\":371680,\"journal\":{\"name\":\"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTW52544.2021.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTW52544.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

高阶突变(high Order Mutation, HOM)被提出以避免等效突变和提高突变测试的可扩展性,但是产生有用的高阶突变本身仍然是一个昂贵的搜索问题。我们提出了一种新的方法来生成强包容高阶突变体(SSHOM)使用最近引入的因果程序依赖分析(CPDA)。CPDA本身基于程序突变,并提供了定量的估计,即一个程序元素的值的变化将导致另一个程序元素的值变化的频率。我们的SSHOM生成方法使用基于CPDA分析的启发式方法选择成对的程序元素,对所选的对进行一阶突变,并通过组合两个fom生成HOM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effectively Sampling Higher Order Mutants Using Causal Effect
Higher Order Mutation (HOM) has been proposed to avoid equivalent mutants and improve the scalability of mutation testing, but generating useful HOMs remain an expensive search problem on its own. We propose a new approach to generate Strongly Subsuming Higher Order Mutants (SSHOM) using a recently introduced Causal Program Dependence Analysis (CPDA). CPDA itself is based on program mutation, and provides quantitative estimation of how often a change of the value of a program element will cause a value change of another program element. Our SSHOM generation approach chooses pairs of program elements using heuristics based on CPDA analysis, performs First Order Mutation to the chosen pairs, and generates an HOM by combining two FOMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effectively Sampling Higher Order Mutants Using Causal Effect Syntax-Tree Similarity for Test-Case Derivability in Software Requirements Automatic Equivalent Mutants Classification Using Abstract Syntax Tree Neural Networks Online GANs for Automatic Performance Testing A Combinatorial Approach to Explaining Image Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1