基于改进DenseNet的焊缝缺陷识别方法

Li Huadu, Luo Renze, Tang Xiang, Wu Yong, Li Yalong
{"title":"基于改进DenseNet的焊缝缺陷识别方法","authors":"Li Huadu, Luo Renze, Tang Xiang, Wu Yong, Li Yalong","doi":"10.1117/12.2667731","DOIUrl":null,"url":null,"abstract":"There are many subjective influencing factors, poor recognition effect and low efficiency in manual evaluation of pipeline weld defects. An intelligent identification method of pipeline weld defects based on improved DenseNet network is proposed. This method firstly uses the form of multi-channel convolution of different scales to improve the DenseNet network, thereby improving the generalization ability of the network. Then, the feature extraction ability of the network is improved by stacking two convolutions of the same scale. Finally, an attention mechanism module is introduced into the dense connection block of the network to achieve the effect of improving beneficial features and suppressing useless features. The experimental results show that the method can achieve 92% accuracy in the identification of pipeline weld defects, which is about 13% higher than the original method, and has high efficiency, which can fully achieve the purpose of industrial application.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weld defect recognition method based on improved DenseNet\",\"authors\":\"Li Huadu, Luo Renze, Tang Xiang, Wu Yong, Li Yalong\",\"doi\":\"10.1117/12.2667731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many subjective influencing factors, poor recognition effect and low efficiency in manual evaluation of pipeline weld defects. An intelligent identification method of pipeline weld defects based on improved DenseNet network is proposed. This method firstly uses the form of multi-channel convolution of different scales to improve the DenseNet network, thereby improving the generalization ability of the network. Then, the feature extraction ability of the network is improved by stacking two convolutions of the same scale. Finally, an attention mechanism module is introduced into the dense connection block of the network to achieve the effect of improving beneficial features and suppressing useless features. The experimental results show that the method can achieve 92% accuracy in the identification of pipeline weld defects, which is about 13% higher than the original method, and has high efficiency, which can fully achieve the purpose of industrial application.\",\"PeriodicalId\":345723,\"journal\":{\"name\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2667731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工评价管道焊缝缺陷主观影响因素多,识别效果差,效率低。提出了一种基于改进DenseNet网络的管道焊缝缺陷智能识别方法。该方法首先采用不同尺度的多通道卷积形式对DenseNet网络进行改进,从而提高了网络的泛化能力。然后,通过叠加两个相同尺度的卷积来提高网络的特征提取能力。最后,在网络的密集连接块中引入注意机制模块,达到提高有益特征和抑制无用特征的效果。实验结果表明,该方法对管道焊缝缺陷的识别准确率可达到92%,比原方法提高13%左右,且效率高,完全可以达到工业应用的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weld defect recognition method based on improved DenseNet
There are many subjective influencing factors, poor recognition effect and low efficiency in manual evaluation of pipeline weld defects. An intelligent identification method of pipeline weld defects based on improved DenseNet network is proposed. This method firstly uses the form of multi-channel convolution of different scales to improve the DenseNet network, thereby improving the generalization ability of the network. Then, the feature extraction ability of the network is improved by stacking two convolutions of the same scale. Finally, an attention mechanism module is introduced into the dense connection block of the network to achieve the effect of improving beneficial features and suppressing useless features. The experimental results show that the method can achieve 92% accuracy in the identification of pipeline weld defects, which is about 13% higher than the original method, and has high efficiency, which can fully achieve the purpose of industrial application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and application of rhythmic gymnastics auxiliary training system based on Kinect Long-term stock price forecast based on PSO-informer model Research on numerical simulation of deep seabed blowout and oil spill range FL-Lightgbm prediction method of unbalanced small sample anti-breast cancer drugs Learning anisotropy and asymmetry geometric features for medical image segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1