Kazutoshi Tanaka, Satoshi Nishikawa, Ryuma Niiyama, Y. Kuniyoshi
{"title":"使用结构集成气动电缆气缸进行跳撞运动的仿人机器人","authors":"Kazutoshi Tanaka, Satoshi Nishikawa, Ryuma Niiyama, Y. Kuniyoshi","doi":"10.1109/HUMANOIDS.2017.8246948","DOIUrl":null,"url":null,"abstract":"In this study, a structure-integrated pneumatic cable cylinder has been developed to serve as an actuator for a humanoid robot. The performance of a robot in jumping and hitting a flying object (jump-and-hit motions) has been tested in order to predict its performance during immediate and dynamic whole-body motions. The authors tested the movement of the robofs arms using a cylinder, and jumping motions were simulated to determine the design parameters for the robot performing jump-and-hit operations. Test results for the robofs arms demonstrated that a two-kilogram arm, constructed using a C3, linder with a piston, 32 mm in diameter, moves 75 degrees in 0.44 s. Simulation results for a bipedal robot's forward jumping motion demonstrated that the top of its trunk, with a 50 mm joint force — torque ratio, moves forward by 3.0 m. Using the cylinder for the robofs arms and a joint with the above force — torque ratio in its legs, a prototype of a humanoid robot has been developed that performs a variety of jump-and-hit motions with a ball flying at it from different directions. Thus, the proposed design allows robots to conveniently perform immediate and dynamic whole-body motions.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Humanoid robot performing jump-and-hit motions using structure-integrated pneumatic cable cylinders\",\"authors\":\"Kazutoshi Tanaka, Satoshi Nishikawa, Ryuma Niiyama, Y. Kuniyoshi\",\"doi\":\"10.1109/HUMANOIDS.2017.8246948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a structure-integrated pneumatic cable cylinder has been developed to serve as an actuator for a humanoid robot. The performance of a robot in jumping and hitting a flying object (jump-and-hit motions) has been tested in order to predict its performance during immediate and dynamic whole-body motions. The authors tested the movement of the robofs arms using a cylinder, and jumping motions were simulated to determine the design parameters for the robot performing jump-and-hit operations. Test results for the robofs arms demonstrated that a two-kilogram arm, constructed using a C3, linder with a piston, 32 mm in diameter, moves 75 degrees in 0.44 s. Simulation results for a bipedal robot's forward jumping motion demonstrated that the top of its trunk, with a 50 mm joint force — torque ratio, moves forward by 3.0 m. Using the cylinder for the robofs arms and a joint with the above force — torque ratio in its legs, a prototype of a humanoid robot has been developed that performs a variety of jump-and-hit motions with a ball flying at it from different directions. Thus, the proposed design allows robots to conveniently perform immediate and dynamic whole-body motions.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Humanoid robot performing jump-and-hit motions using structure-integrated pneumatic cable cylinders
In this study, a structure-integrated pneumatic cable cylinder has been developed to serve as an actuator for a humanoid robot. The performance of a robot in jumping and hitting a flying object (jump-and-hit motions) has been tested in order to predict its performance during immediate and dynamic whole-body motions. The authors tested the movement of the robofs arms using a cylinder, and jumping motions were simulated to determine the design parameters for the robot performing jump-and-hit operations. Test results for the robofs arms demonstrated that a two-kilogram arm, constructed using a C3, linder with a piston, 32 mm in diameter, moves 75 degrees in 0.44 s. Simulation results for a bipedal robot's forward jumping motion demonstrated that the top of its trunk, with a 50 mm joint force — torque ratio, moves forward by 3.0 m. Using the cylinder for the robofs arms and a joint with the above force — torque ratio in its legs, a prototype of a humanoid robot has been developed that performs a variety of jump-and-hit motions with a ball flying at it from different directions. Thus, the proposed design allows robots to conveniently perform immediate and dynamic whole-body motions.