使用5w的孟加拉语语义角色标注

Amitava Das, Aniruddha Ghosh, Sivaji Bandyopadhyay
{"title":"使用5w的孟加拉语语义角色标注","authors":"Amitava Das, Aniruddha Ghosh, Sivaji Bandyopadhyay","doi":"10.1109/NLPKE.2010.5587772","DOIUrl":null,"url":null,"abstract":"In this paper we present different methodologies to extract semantic role labels of Bengali nouns using 5W distilling. The 5W task seeks to extract the semantic information of nouns in a natural language sentence by distilling it into the answers to the 5W questions: Who, What, When, Where and Why. As Bengali is a resource constraint language, the building of annotated gold standard corpus and acquisition of linguistics tools for features extraction are described in this paper. The tag label wise reported precision values of the present system are: 79.56% (Who), 65.45% (What), 73.35% (When), 77.66% (Where) and 63.50% (Why).","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Semantic role labeling for Bengali using 5Ws\",\"authors\":\"Amitava Das, Aniruddha Ghosh, Sivaji Bandyopadhyay\",\"doi\":\"10.1109/NLPKE.2010.5587772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present different methodologies to extract semantic role labels of Bengali nouns using 5W distilling. The 5W task seeks to extract the semantic information of nouns in a natural language sentence by distilling it into the answers to the 5W questions: Who, What, When, Where and Why. As Bengali is a resource constraint language, the building of annotated gold standard corpus and acquisition of linguistics tools for features extraction are described in this paper. The tag label wise reported precision values of the present system are: 79.56% (Who), 65.45% (What), 73.35% (When), 77.66% (Where) and 63.50% (Why).\",\"PeriodicalId\":259975,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NLPKE.2010.5587772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了利用5W提取孟加拉语名词语义角色标签的不同方法。5W任务旨在提取自然语言句子中名词的语义信息,将其提炼成5W问题(Who, What, When, Where and Why)的答案。由于孟加拉语是一种资源约束性语言,本文介绍了带注释金标准语料库的构建和特征提取语言学工具的获取。目前系统的标签报告精度值分别为:79.56% (Who)、65.45% (What)、73.35% (When)、77.66% (Where)和63.50% (Why)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic role labeling for Bengali using 5Ws
In this paper we present different methodologies to extract semantic role labels of Bengali nouns using 5W distilling. The 5W task seeks to extract the semantic information of nouns in a natural language sentence by distilling it into the answers to the 5W questions: Who, What, When, Where and Why. As Bengali is a resource constraint language, the building of annotated gold standard corpus and acquisition of linguistics tools for features extraction are described in this paper. The tag label wise reported precision values of the present system are: 79.56% (Who), 65.45% (What), 73.35% (When), 77.66% (Where) and 63.50% (Why).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dashboard: An integration and testing platform based on backboard architecture for NLP applications Chinese semantic role labeling based on semantic knowledge Transitivity in semantic relation learning Wisdom media “CAIWA Channel” based on natural language interface agent A new cascade algorithm based on CRFs for recognizing Chinese verb-object collocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1