{"title":"改进泰语语音翻译的分词方法","authors":"Paisarn Charoenpornsawat, Tanja Schultz","doi":"10.1109/SLT.2008.4777885","DOIUrl":null,"url":null,"abstract":"A vocabulary list and language model are primary components in a speech translation system. Generating both from plain text is a straightforward task for English. However, it is quite challenging for Chinese, Japanese, or Thai which provide no word segmentation, i.e. the text has no word boundary delimiter. For Thai word segmentation, maximal matching, a lexicon-based approach, is one of the popular methods. Nevertheless this method heavily relies on the coverage of the lexicon. When text contains an unknown word, this method usually produces a wrong boundary. When extracting words from this segmented text, some words will not be retrieved because of wrong segmentation. In this paper, we propose statistical techniques to tackle this problem. Based on different word segmentation methods we develop various speech translation systems and show that the proposed method can significantly improve the translation accuracy by about 6.42% BLEU points compared to the baseline system.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Improving word segmentation for Thai speech translation\",\"authors\":\"Paisarn Charoenpornsawat, Tanja Schultz\",\"doi\":\"10.1109/SLT.2008.4777885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A vocabulary list and language model are primary components in a speech translation system. Generating both from plain text is a straightforward task for English. However, it is quite challenging for Chinese, Japanese, or Thai which provide no word segmentation, i.e. the text has no word boundary delimiter. For Thai word segmentation, maximal matching, a lexicon-based approach, is one of the popular methods. Nevertheless this method heavily relies on the coverage of the lexicon. When text contains an unknown word, this method usually produces a wrong boundary. When extracting words from this segmented text, some words will not be retrieved because of wrong segmentation. In this paper, we propose statistical techniques to tackle this problem. Based on different word segmentation methods we develop various speech translation systems and show that the proposed method can significantly improve the translation accuracy by about 6.42% BLEU points compared to the baseline system.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving word segmentation for Thai speech translation
A vocabulary list and language model are primary components in a speech translation system. Generating both from plain text is a straightforward task for English. However, it is quite challenging for Chinese, Japanese, or Thai which provide no word segmentation, i.e. the text has no word boundary delimiter. For Thai word segmentation, maximal matching, a lexicon-based approach, is one of the popular methods. Nevertheless this method heavily relies on the coverage of the lexicon. When text contains an unknown word, this method usually produces a wrong boundary. When extracting words from this segmented text, some words will not be retrieved because of wrong segmentation. In this paper, we propose statistical techniques to tackle this problem. Based on different word segmentation methods we develop various speech translation systems and show that the proposed method can significantly improve the translation accuracy by about 6.42% BLEU points compared to the baseline system.