使用无监督学习方法评估人类活动识别的动作原语

Luis F. Mejia-Ricart, Paul Helling, Aspen Olmsted
{"title":"使用无监督学习方法评估人类活动识别的动作原语","authors":"Luis F. Mejia-Ricart, Paul Helling, Aspen Olmsted","doi":"10.23919/ICITST.2017.8356374","DOIUrl":null,"url":null,"abstract":"Smartphones and wearable devices are in the frontlines when it comes to the field of Human Activity Recognition (HAR). There have been numerous attempts to use motion sensors in smartphones and wearables to recognize human activity. Most of these studies apply supervised learning techniques, which requires them to use labeled datasets. In this work, we take a sample of these labels, or action primitives (sit, stand, run, walk, jump, lie down), and evaluate them against the resulting labels of several clustering algorithms. We built two datasets (labeled and unlabeled) using accelerometer, gyroscope, and pedometer readings from two fixed-position devices, a smartphone in the side pocket, and a smartwatch strapped onto the left-hand wrist. Ultimately, we want to determine whether these action primitives commonly used in HAR are optimal, and suggest a better set of primitives if not.","PeriodicalId":440665,"journal":{"name":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Evaluate action primitives for human activity recognition using unsupervised learning approach\",\"authors\":\"Luis F. Mejia-Ricart, Paul Helling, Aspen Olmsted\",\"doi\":\"10.23919/ICITST.2017.8356374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smartphones and wearable devices are in the frontlines when it comes to the field of Human Activity Recognition (HAR). There have been numerous attempts to use motion sensors in smartphones and wearables to recognize human activity. Most of these studies apply supervised learning techniques, which requires them to use labeled datasets. In this work, we take a sample of these labels, or action primitives (sit, stand, run, walk, jump, lie down), and evaluate them against the resulting labels of several clustering algorithms. We built two datasets (labeled and unlabeled) using accelerometer, gyroscope, and pedometer readings from two fixed-position devices, a smartphone in the side pocket, and a smartwatch strapped onto the left-hand wrist. Ultimately, we want to determine whether these action primitives commonly used in HAR are optimal, and suggest a better set of primitives if not.\",\"PeriodicalId\":440665,\"journal\":{\"name\":\"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICITST.2017.8356374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICITST.2017.8356374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在人类活动识别(HAR)领域,智能手机和可穿戴设备处于最前沿。人们曾多次尝试在智能手机和可穿戴设备中使用运动传感器来识别人类活动。这些研究大多应用监督学习技术,这需要他们使用标记数据集。在这项工作中,我们取了这些标签或动作原语(坐、站、跑、走、跳、躺)的一个样本,并根据几种聚类算法的结果标签对它们进行评估。我们建立了两个数据集(标记和未标记),使用加速度计,陀螺仪和计步器读数从两个固定位置的设备,智能手机放在侧口袋,智能手表绑在左手手腕。最终,我们希望确定HAR中常用的这些动作原语是否是最佳的,如果不是,则建议一组更好的原语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluate action primitives for human activity recognition using unsupervised learning approach
Smartphones and wearable devices are in the frontlines when it comes to the field of Human Activity Recognition (HAR). There have been numerous attempts to use motion sensors in smartphones and wearables to recognize human activity. Most of these studies apply supervised learning techniques, which requires them to use labeled datasets. In this work, we take a sample of these labels, or action primitives (sit, stand, run, walk, jump, lie down), and evaluate them against the resulting labels of several clustering algorithms. We built two datasets (labeled and unlabeled) using accelerometer, gyroscope, and pedometer readings from two fixed-position devices, a smartphone in the side pocket, and a smartwatch strapped onto the left-hand wrist. Ultimately, we want to determine whether these action primitives commonly used in HAR are optimal, and suggest a better set of primitives if not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the cost of cyber security in smart business Towards comparing programming paradigms Towards a security baseline for IaaS-cloud back-ends in Industry 4.0 Enhancing security in the cloud: When traceability meets access control New keyed chaotic neural network hash function based on sponge construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1