随机矩阵域的分类渐近性

Romain Couillet, Zhenyu Liao, Xiaoyi Mai
{"title":"随机矩阵域的分类渐近性","authors":"Romain Couillet, Zhenyu Liao, Xiaoyi Mai","doi":"10.23919/EUSIPCO.2018.8553034","DOIUrl":null,"url":null,"abstract":"This article discusses the asymptotic performance of classical machine learning classification methods (from discriminant analysis to neural networks) for simultaneously large and numerous Gaussian mixture modelled data. We first provide theoretical bounds on the minimally discriminable class means and covariances under an oracle setting, which are then compared to recent theoretical findings on the performance of machine learning. Non-obvious phenomena are discussed, among which surprising phase transitions in the optimal performance rates for specific hyperparameter settings.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Classification Asymptotics in the Random Matrix Regime\",\"authors\":\"Romain Couillet, Zhenyu Liao, Xiaoyi Mai\",\"doi\":\"10.23919/EUSIPCO.2018.8553034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article discusses the asymptotic performance of classical machine learning classification methods (from discriminant analysis to neural networks) for simultaneously large and numerous Gaussian mixture modelled data. We first provide theoretical bounds on the minimally discriminable class means and covariances under an oracle setting, which are then compared to recent theoretical findings on the performance of machine learning. Non-obvious phenomena are discussed, among which surprising phase transitions in the optimal performance rates for specific hyperparameter settings.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文讨论了经典机器学习分类方法(从判别分析到神经网络)对同时大量和大量高斯混合建模数据的渐近性能。我们首先提供了在oracle设置下的最小可判别类均值和协方差的理论界限,然后将其与最近关于机器学习性能的理论发现进行比较。讨论了非明显的现象,其中在特定的超参数设置下,最优性能率的惊人相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification Asymptotics in the Random Matrix Regime
This article discusses the asymptotic performance of classical machine learning classification methods (from discriminant analysis to neural networks) for simultaneously large and numerous Gaussian mixture modelled data. We first provide theoretical bounds on the minimally discriminable class means and covariances under an oracle setting, which are then compared to recent theoretical findings on the performance of machine learning. Non-obvious phenomena are discussed, among which surprising phase transitions in the optimal performance rates for specific hyperparameter settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1