{"title":"基于广义三角分解的MIMO SWIPT系统数据速率最大化收发器设计","authors":"Ahmed Al-Baidhani, M. Benaissa, Mikko Vehkaperä","doi":"10.1109/WCSP.2018.8555580","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a new approach for simultaneous wireless information and power transfer (SWIPT) in point-to-point multiple-input multiple-output (MIMO) system with spatial switching (SS) reception. The new approach is based on the generalized triangular decomposition (GTD). The approach takes advantage of the GTD structure to allow the transmitter to use the strongest subchannel jointly for energy harvesting and information exchange while these transmissions can be separated at the receiver to comply with the SS system requirements. An optimal solution is developed in the paper for SWIPT based on GTD that jointly obtains the optimal subchannels assignment and maximizes the total data rate while meeting the minimum requirement of the harvested energy with limited total transmitted power. The theoretical and numerical results presented in this paper show that the proposed approach significantly outperforms the state of the art spatial domain SWIPT systems based on the singular value decomposition (SVD).","PeriodicalId":423073,"journal":{"name":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transceiver Design for Data Rate Maximization of MIMO SWIPT System Based on Generalized Triangular Decomposition\",\"authors\":\"Ahmed Al-Baidhani, M. Benaissa, Mikko Vehkaperä\",\"doi\":\"10.1109/WCSP.2018.8555580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a new approach for simultaneous wireless information and power transfer (SWIPT) in point-to-point multiple-input multiple-output (MIMO) system with spatial switching (SS) reception. The new approach is based on the generalized triangular decomposition (GTD). The approach takes advantage of the GTD structure to allow the transmitter to use the strongest subchannel jointly for energy harvesting and information exchange while these transmissions can be separated at the receiver to comply with the SS system requirements. An optimal solution is developed in the paper for SWIPT based on GTD that jointly obtains the optimal subchannels assignment and maximizes the total data rate while meeting the minimum requirement of the harvested energy with limited total transmitted power. The theoretical and numerical results presented in this paper show that the proposed approach significantly outperforms the state of the art spatial domain SWIPT systems based on the singular value decomposition (SVD).\",\"PeriodicalId\":423073,\"journal\":{\"name\":\"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2018.8555580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2018.8555580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transceiver Design for Data Rate Maximization of MIMO SWIPT System Based on Generalized Triangular Decomposition
In this paper, we investigate a new approach for simultaneous wireless information and power transfer (SWIPT) in point-to-point multiple-input multiple-output (MIMO) system with spatial switching (SS) reception. The new approach is based on the generalized triangular decomposition (GTD). The approach takes advantage of the GTD structure to allow the transmitter to use the strongest subchannel jointly for energy harvesting and information exchange while these transmissions can be separated at the receiver to comply with the SS system requirements. An optimal solution is developed in the paper for SWIPT based on GTD that jointly obtains the optimal subchannels assignment and maximizes the total data rate while meeting the minimum requirement of the harvested energy with limited total transmitted power. The theoretical and numerical results presented in this paper show that the proposed approach significantly outperforms the state of the art spatial domain SWIPT systems based on the singular value decomposition (SVD).