Kai Zhang, Yongxin Liu, Jian Wang, Houbing Song, Dahai Liu
{"title":"基于树的空域容量估算","authors":"Kai Zhang, Yongxin Liu, Jian Wang, Houbing Song, Dahai Liu","doi":"10.1109/ICNS50378.2020.9222986","DOIUrl":null,"url":null,"abstract":"Accurate estimation of airspace capacity is essential to a safe, efficient and predictable air transportation system. Conventional approaches focus on controller workload using airspace complexity measurements that only consider operational conditions of controllers. However, such model-driven methods don’t completely demonstrate airspace capacity in the real world because of lack of consideration for other critical factors such as weather. To address this challenge, we propose a new airspace capacity estimation model based on decision tree ensembles. Our model combines multi-source data to quantify the maximum transportation capacity of en route sector under different circumstances.This paper makes the following contributions: (a) we present an interpretable data-driven model that estimates the capacities of the National Airspace System (NAS), and highlight factor importance for airspace capacities; (b) the airspace capacity estimated by our proposed model is dynamically adjusted based on the real-time environment that has the potential to be a guide for temporary flight path changes or air traffic selections for an emergency landing; and (c) we promote the role of machine learning-based methods in future ATM and airspace optimization.","PeriodicalId":424869,"journal":{"name":"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tree-Based Airspace Capacity Estimation\",\"authors\":\"Kai Zhang, Yongxin Liu, Jian Wang, Houbing Song, Dahai Liu\",\"doi\":\"10.1109/ICNS50378.2020.9222986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate estimation of airspace capacity is essential to a safe, efficient and predictable air transportation system. Conventional approaches focus on controller workload using airspace complexity measurements that only consider operational conditions of controllers. However, such model-driven methods don’t completely demonstrate airspace capacity in the real world because of lack of consideration for other critical factors such as weather. To address this challenge, we propose a new airspace capacity estimation model based on decision tree ensembles. Our model combines multi-source data to quantify the maximum transportation capacity of en route sector under different circumstances.This paper makes the following contributions: (a) we present an interpretable data-driven model that estimates the capacities of the National Airspace System (NAS), and highlight factor importance for airspace capacities; (b) the airspace capacity estimated by our proposed model is dynamically adjusted based on the real-time environment that has the potential to be a guide for temporary flight path changes or air traffic selections for an emergency landing; and (c) we promote the role of machine learning-based methods in future ATM and airspace optimization.\",\"PeriodicalId\":424869,\"journal\":{\"name\":\"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNS50378.2020.9222986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNS50378.2020.9222986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accurate estimation of airspace capacity is essential to a safe, efficient and predictable air transportation system. Conventional approaches focus on controller workload using airspace complexity measurements that only consider operational conditions of controllers. However, such model-driven methods don’t completely demonstrate airspace capacity in the real world because of lack of consideration for other critical factors such as weather. To address this challenge, we propose a new airspace capacity estimation model based on decision tree ensembles. Our model combines multi-source data to quantify the maximum transportation capacity of en route sector under different circumstances.This paper makes the following contributions: (a) we present an interpretable data-driven model that estimates the capacities of the National Airspace System (NAS), and highlight factor importance for airspace capacities; (b) the airspace capacity estimated by our proposed model is dynamically adjusted based on the real-time environment that has the potential to be a guide for temporary flight path changes or air traffic selections for an emergency landing; and (c) we promote the role of machine learning-based methods in future ATM and airspace optimization.