Mohammad M. Khajah, Brett D. Roads, Robert V. Lindsey, Yun-En Liu, M. Mozer
{"title":"运用贝叶斯优化设计引人入胜的游戏","authors":"Mohammad M. Khajah, Brett D. Roads, Robert V. Lindsey, Yun-En Liu, M. Mozer","doi":"10.1145/2858036.2858253","DOIUrl":null,"url":null,"abstract":"We use Bayesian optimization methods to design games that maximize user engagement. Participants are paid to try a game for several minutes, at which point they can quit or continue to play voluntarily with no further compensation. Engagement is measured by player persistence, projections of how long others will play, and a post-game survey. Using Gaussian process surrogate-based optimization, we conduct efficient experiments to identify game design characteristics---specifically those influencing difficulty---that lead to maximal engagement. We study two games requiring trajectory planning, the difficulty of each is determined by a three-dimensional continuous design space. Two of the design dimensions manipulate the game in user-transparent manner (e.g., the spacing of obstacles), the third in a subtle and possibly covert manner (incremental trajectory corrections). Converging results indicate that overt difficulty manipulations are effective in modulating engagement only when combined with the covert manipulation, suggesting the critical role of a user's self-perception of competence.","PeriodicalId":169608,"journal":{"name":"Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Designing Engaging Games Using Bayesian Optimization\",\"authors\":\"Mohammad M. Khajah, Brett D. Roads, Robert V. Lindsey, Yun-En Liu, M. Mozer\",\"doi\":\"10.1145/2858036.2858253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use Bayesian optimization methods to design games that maximize user engagement. Participants are paid to try a game for several minutes, at which point they can quit or continue to play voluntarily with no further compensation. Engagement is measured by player persistence, projections of how long others will play, and a post-game survey. Using Gaussian process surrogate-based optimization, we conduct efficient experiments to identify game design characteristics---specifically those influencing difficulty---that lead to maximal engagement. We study two games requiring trajectory planning, the difficulty of each is determined by a three-dimensional continuous design space. Two of the design dimensions manipulate the game in user-transparent manner (e.g., the spacing of obstacles), the third in a subtle and possibly covert manner (incremental trajectory corrections). Converging results indicate that overt difficulty manipulations are effective in modulating engagement only when combined with the covert manipulation, suggesting the critical role of a user's self-perception of competence.\",\"PeriodicalId\":169608,\"journal\":{\"name\":\"Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2858036.2858253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2858036.2858253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing Engaging Games Using Bayesian Optimization
We use Bayesian optimization methods to design games that maximize user engagement. Participants are paid to try a game for several minutes, at which point they can quit or continue to play voluntarily with no further compensation. Engagement is measured by player persistence, projections of how long others will play, and a post-game survey. Using Gaussian process surrogate-based optimization, we conduct efficient experiments to identify game design characteristics---specifically those influencing difficulty---that lead to maximal engagement. We study two games requiring trajectory planning, the difficulty of each is determined by a three-dimensional continuous design space. Two of the design dimensions manipulate the game in user-transparent manner (e.g., the spacing of obstacles), the third in a subtle and possibly covert manner (incremental trajectory corrections). Converging results indicate that overt difficulty manipulations are effective in modulating engagement only when combined with the covert manipulation, suggesting the critical role of a user's self-perception of competence.