基于稀疏编码和时间金字塔池的骨骼运动姿态人体跌倒检测

Yie-Tarng Chen, Wen-Hsien Fang, Shimeng Dai, Choa-Chuan Lu
{"title":"基于稀疏编码和时间金字塔池的骨骼运动姿态人体跌倒检测","authors":"Yie-Tarng Chen, Wen-Hsien Fang, Shimeng Dai, Choa-Chuan Lu","doi":"10.1109/ICASI52993.2021.9568464","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient, yet high-accurate skeleton-based approach for human fall detection, which combines the sparse coding and temporal pyramid pooling techniques. The new method first separates the skeleton joints into five different parts, for each of which a moving pose descriptor is extracted to represent the human sub-actions. The principal component analysis is then employed to reduce the dimensions of the descriptors. Afterwards, sparse coding is invoked to encode each descriptor separately. Finally, these encoded descriptors are treated as a set of time series and then aggregated into the final video descriptors by temporal pyramid pooling, which can acquire temporal tendency to further boost the performance. Experimental results show that the new approach outperforms the state-of-the-art works on some commonly used datasets.","PeriodicalId":103254,"journal":{"name":"2021 7th International Conference on Applied System Innovation (ICASI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skeleton Moving Pose-based Human Fall Detection with Sparse Coding and Temporal Pyramid Pooling\",\"authors\":\"Yie-Tarng Chen, Wen-Hsien Fang, Shimeng Dai, Choa-Chuan Lu\",\"doi\":\"10.1109/ICASI52993.2021.9568464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient, yet high-accurate skeleton-based approach for human fall detection, which combines the sparse coding and temporal pyramid pooling techniques. The new method first separates the skeleton joints into five different parts, for each of which a moving pose descriptor is extracted to represent the human sub-actions. The principal component analysis is then employed to reduce the dimensions of the descriptors. Afterwards, sparse coding is invoked to encode each descriptor separately. Finally, these encoded descriptors are treated as a set of time series and then aggregated into the final video descriptors by temporal pyramid pooling, which can acquire temporal tendency to further boost the performance. Experimental results show that the new approach outperforms the state-of-the-art works on some commonly used datasets.\",\"PeriodicalId\":103254,\"journal\":{\"name\":\"2021 7th International Conference on Applied System Innovation (ICASI)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Applied System Innovation (ICASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASI52993.2021.9568464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI52993.2021.9568464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种高效、高精度的基于骨骼的人体跌倒检测方法,该方法结合了稀疏编码和时间金字塔池技术。新方法首先将骨骼关节分成五个不同的部分,为每个部分提取一个运动姿态描述符来表示人体的子动作。然后采用主成分分析来降低描述符的维数。然后,调用稀疏编码分别对每个描述符进行编码。最后,将这些编码后的描述符作为一组时间序列进行处理,然后通过时间金字塔池聚合成最终的视频描述符,从而获得时间趋势,进一步提高性能。实验结果表明,该方法在一些常用数据集上的性能优于目前最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Skeleton Moving Pose-based Human Fall Detection with Sparse Coding and Temporal Pyramid Pooling
This paper presents an efficient, yet high-accurate skeleton-based approach for human fall detection, which combines the sparse coding and temporal pyramid pooling techniques. The new method first separates the skeleton joints into five different parts, for each of which a moving pose descriptor is extracted to represent the human sub-actions. The principal component analysis is then employed to reduce the dimensions of the descriptors. Afterwards, sparse coding is invoked to encode each descriptor separately. Finally, these encoded descriptors are treated as a set of time series and then aggregated into the final video descriptors by temporal pyramid pooling, which can acquire temporal tendency to further boost the performance. Experimental results show that the new approach outperforms the state-of-the-art works on some commonly used datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Skeleton Moving Pose-based Human Fall Detection with Sparse Coding and Temporal Pyramid Pooling Novel Lactobacillus Fermentation Prediction Using Deep Learning A Review on the Resilience Assessment of Power Systems under Disasters Graph Signal Denoising Method via Hybrid Neumann-Series and Edge-Variant Graph Filters A Broadband Double Ridged Horn Antenna for Radiated Immunity and Emissions Test from 18 GHz to 50 GHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1