{"title":"基于ResNeXt的星系形态分类","authors":"Yang Yu","doi":"10.1117/12.2667464","DOIUrl":null,"url":null,"abstract":"The morphology of galaxies can reflect the physical properties of galaxies themselves, and the classification of their morphology plays an important role in the subsequent analysis and research.In this paper, we use the photometry image of galaxy in GalaxyZoo2, select the data set according to the threshold and perform data augmentation, and apply ResNeXt to the classification of galaxy morphology, which realizes the automatic extraction, recognition and classification of galaxy morphological features.Based on the results of ResNeXt's galaxy morphology classification, five groups of comparative experiments are carried out.The five groups of comparison experiments include comparing different versions of ResNeXt model, comparing classical convolutional neural network model, comparing the latest image classification model in the last two years, comparing the simplest convolutional neural network model, and comparing the human eye.The experimental results show that the galaxy morphology classification accuracy based on ResNeXt101 network model is the highest.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galaxy morphology classification based on ResNeXt\",\"authors\":\"Yang Yu\",\"doi\":\"10.1117/12.2667464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The morphology of galaxies can reflect the physical properties of galaxies themselves, and the classification of their morphology plays an important role in the subsequent analysis and research.In this paper, we use the photometry image of galaxy in GalaxyZoo2, select the data set according to the threshold and perform data augmentation, and apply ResNeXt to the classification of galaxy morphology, which realizes the automatic extraction, recognition and classification of galaxy morphological features.Based on the results of ResNeXt's galaxy morphology classification, five groups of comparative experiments are carried out.The five groups of comparison experiments include comparing different versions of ResNeXt model, comparing classical convolutional neural network model, comparing the latest image classification model in the last two years, comparing the simplest convolutional neural network model, and comparing the human eye.The experimental results show that the galaxy morphology classification accuracy based on ResNeXt101 network model is the highest.\",\"PeriodicalId\":345723,\"journal\":{\"name\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2667464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

星系的形态可以反映星系本身的物理性质,对其形态进行分类对后续的分析和研究具有重要作用。本文利用GalaxyZoo2中的星系测光图像,根据阈值选择数据集并进行数据增强,将ResNeXt应用于星系形态分类,实现了星系形态特征的自动提取、识别和分类。基于ResNeXt的星系形态分类结果,进行了五组对比实验。五组对比实验包括:对比不同版本的ResNeXt模型、对比经典卷积神经网络模型、对比近两年最新的图像分类模型、对比最简单的卷积神经网络模型、对比人眼。实验结果表明,基于ResNeXt101网络模型的星系形态分类准确率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Galaxy morphology classification based on ResNeXt
The morphology of galaxies can reflect the physical properties of galaxies themselves, and the classification of their morphology plays an important role in the subsequent analysis and research.In this paper, we use the photometry image of galaxy in GalaxyZoo2, select the data set according to the threshold and perform data augmentation, and apply ResNeXt to the classification of galaxy morphology, which realizes the automatic extraction, recognition and classification of galaxy morphological features.Based on the results of ResNeXt's galaxy morphology classification, five groups of comparative experiments are carried out.The five groups of comparison experiments include comparing different versions of ResNeXt model, comparing classical convolutional neural network model, comparing the latest image classification model in the last two years, comparing the simplest convolutional neural network model, and comparing the human eye.The experimental results show that the galaxy morphology classification accuracy based on ResNeXt101 network model is the highest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and application of rhythmic gymnastics auxiliary training system based on Kinect Long-term stock price forecast based on PSO-informer model Research on numerical simulation of deep seabed blowout and oil spill range FL-Lightgbm prediction method of unbalanced small sample anti-breast cancer drugs Learning anisotropy and asymmetry geometric features for medical image segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1