无监督学习的并行自组织地图

I. Valova, D. Szer, N. Georgieva
{"title":"无监督学习的并行自组织地图","authors":"I. Valova, D. Szer, N. Georgieva","doi":"10.1109/IJCNN.2002.1007813","DOIUrl":null,"url":null,"abstract":"SOM approximates a high dimensional unknown input distribution with lower dimensional neural network structure to model the topology of the input space as closely as possible. We present a SOM that processes the whole input in parallel and organizes itself over time. This way, networks can be developed that do not reorganize their structure from scratch every time a new set of input vectors is presented but rather adjust their internal architecture in accordance with previous mappings.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A growing parallel self-organizing map for unsupervised learning\",\"authors\":\"I. Valova, D. Szer, N. Georgieva\",\"doi\":\"10.1109/IJCNN.2002.1007813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SOM approximates a high dimensional unknown input distribution with lower dimensional neural network structure to model the topology of the input space as closely as possible. We present a SOM that processes the whole input in parallel and organizes itself over time. This way, networks can be developed that do not reorganize their structure from scratch every time a new set of input vectors is presented but rather adjust their internal architecture in accordance with previous mappings.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

SOM用低维神经网络结构逼近高维未知输入分布,尽可能接近地模拟输入空间的拓扑结构。我们提出了一个SOM,它可以并行处理整个输入,并随着时间的推移进行自我组织。通过这种方式,可以开发网络,而不是每次出现一组新的输入向量时从头开始重新组织其结构,而是根据先前的映射调整其内部结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A growing parallel self-organizing map for unsupervised learning
SOM approximates a high dimensional unknown input distribution with lower dimensional neural network structure to model the topology of the input space as closely as possible. We present a SOM that processes the whole input in parallel and organizes itself over time. This way, networks can be developed that do not reorganize their structure from scratch every time a new set of input vectors is presented but rather adjust their internal architecture in accordance with previous mappings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1