残数系统计算的集成光子体系结构

Jiaxin Peng, Y. Alkabani, Shuai Sun, V. Sorger, T. El-Ghazawi
{"title":"残数系统计算的集成光子体系结构","authors":"Jiaxin Peng, Y. Alkabani, Shuai Sun, V. Sorger, T. El-Ghazawi","doi":"10.1109/ICRC.2019.8914700","DOIUrl":null,"url":null,"abstract":"Residue number system (RNS) can represent large numbers as sets of relatively smaller prime numbers. Architectures for such systems can be inherently parallel, as arithmetic operations on large numbers can then be performed on elements of those sets individually. As RNS arithmetic is based on modulo operations, an RNS computational unit is usually constructed as a network of switches that are controlled to perform a specific computation, giving rise to the processing in network (PIN) paradigm. In this work, we explore using integrated photonics switches to build different high-speed architectures of RNS computational units based on multistage interconnection networks. The inherent parallelism of RNS, as well as very low energy of integrated phontonics are two primary reasons for the promise of this direction. We study the trade-offs between the area and the control complexity of five different architectures. We show that our newly proposed architecture, which is based on arbitrary size Benes (AS-Benes) networks, saves up to 90% of the area and is up to 16 times faster than the other architectures.","PeriodicalId":297574,"journal":{"name":"2019 IEEE International Conference on Rebooting Computing (ICRC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Integrated Photonics Architectures for Residue Number System Computations\",\"authors\":\"Jiaxin Peng, Y. Alkabani, Shuai Sun, V. Sorger, T. El-Ghazawi\",\"doi\":\"10.1109/ICRC.2019.8914700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Residue number system (RNS) can represent large numbers as sets of relatively smaller prime numbers. Architectures for such systems can be inherently parallel, as arithmetic operations on large numbers can then be performed on elements of those sets individually. As RNS arithmetic is based on modulo operations, an RNS computational unit is usually constructed as a network of switches that are controlled to perform a specific computation, giving rise to the processing in network (PIN) paradigm. In this work, we explore using integrated photonics switches to build different high-speed architectures of RNS computational units based on multistage interconnection networks. The inherent parallelism of RNS, as well as very low energy of integrated phontonics are two primary reasons for the promise of this direction. We study the trade-offs between the area and the control complexity of five different architectures. We show that our newly proposed architecture, which is based on arbitrary size Benes (AS-Benes) networks, saves up to 90% of the area and is up to 16 times faster than the other architectures.\",\"PeriodicalId\":297574,\"journal\":{\"name\":\"2019 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2019.8914700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2019.8914700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

残数系统(RNS)可以将大数表示为相对较小的素数集合。这类系统的体系结构本质上是并行的,因为对大数的算术运算可以分别在这些集合的元素上执行。由于RNS算法基于模运算,一个RNS计算单元通常被构造为一个由交换机组成的网络,这些交换机被控制来执行特定的计算,从而产生了网络处理(PIN)范式。在这项工作中,我们探索了使用集成光子开关来构建基于多级互连网络的RNS计算单元的不同高速架构。RNS固有的并行性,以及集成声子的低能量是这个方向有希望的两个主要原因。我们研究了五种不同架构的面积和控制复杂性之间的权衡。我们表明,我们新提出的基于任意大小的Benes (AS-Benes)网络的架构节省了高达90%的面积,并且比其他架构快16倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Photonics Architectures for Residue Number System Computations
Residue number system (RNS) can represent large numbers as sets of relatively smaller prime numbers. Architectures for such systems can be inherently parallel, as arithmetic operations on large numbers can then be performed on elements of those sets individually. As RNS arithmetic is based on modulo operations, an RNS computational unit is usually constructed as a network of switches that are controlled to perform a specific computation, giving rise to the processing in network (PIN) paradigm. In this work, we explore using integrated photonics switches to build different high-speed architectures of RNS computational units based on multistage interconnection networks. The inherent parallelism of RNS, as well as very low energy of integrated phontonics are two primary reasons for the promise of this direction. We study the trade-offs between the area and the control complexity of five different architectures. We show that our newly proposed architecture, which is based on arbitrary size Benes (AS-Benes) networks, saves up to 90% of the area and is up to 16 times faster than the other architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Copyright notice] Entangled State Preparation for Non-Binary Quantum Computing Integrated Photonics Architectures for Residue Number System Computations Experimental Insights from the Rogues Gallery Message from the 2019 ICRC General Co-Chairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1