3d打印管道湍流中打印参数对压降的影响

Thomas G. Shepard, John E. Wentz, T. Bender, Derek Olmschenk, Alex Gutenberg
{"title":"3d打印管道湍流中打印参数对压降的影响","authors":"Thomas G. Shepard, John E. Wentz, T. Bender, Derek Olmschenk, Alex Gutenberg","doi":"10.1115/fedsm2020-20252","DOIUrl":null,"url":null,"abstract":"\n Flow conduits made via additive manufacturing, commonly referred to as 3-D printing, are of increasing interest for a variety of industrial applications due to the ability to create unique and conformal flow paths that would not be possible with other fabrication techniques. Fused filament fabrication (FFF) is an additive manufacturing technique that is seeing new interest in the creation of internal flow channels with its ability to print high-temperature polymers and soluble supports. Printing parameter choices in the FFF printing process result in surfaces that can have significant profile differences that may significantly impact the flow characteristics within the conduits. In this study, two print parameters were experimentally studied for turbulent water flow through circular pipes created by fused filament fabrication out of acrylonitrile butadiene styrene (ABS). The print layer orientation relative to the flow was investigated for printing layers parallel, perpendicular, and at 45 degrees from the flow axis. Layer thickness were varied from 0.254 mm to 0.330 mm and all channels were created using soluble support structures. Pressure drops were measured for fully developed flow through pipes with an inside diameter of 5 mm and Reynolds numbers up to 62,000. Results are presented in terms of relative pressure drops as well as the wall surface roughness that would lead to such impacts. These flow-determined grain surface roughnesses are then compared against measurements of print surface roughness.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Print Parameters on Pressure Drop in Turbulent Flow Through 3-D Printed Pipes\",\"authors\":\"Thomas G. Shepard, John E. Wentz, T. Bender, Derek Olmschenk, Alex Gutenberg\",\"doi\":\"10.1115/fedsm2020-20252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Flow conduits made via additive manufacturing, commonly referred to as 3-D printing, are of increasing interest for a variety of industrial applications due to the ability to create unique and conformal flow paths that would not be possible with other fabrication techniques. Fused filament fabrication (FFF) is an additive manufacturing technique that is seeing new interest in the creation of internal flow channels with its ability to print high-temperature polymers and soluble supports. Printing parameter choices in the FFF printing process result in surfaces that can have significant profile differences that may significantly impact the flow characteristics within the conduits. In this study, two print parameters were experimentally studied for turbulent water flow through circular pipes created by fused filament fabrication out of acrylonitrile butadiene styrene (ABS). The print layer orientation relative to the flow was investigated for printing layers parallel, perpendicular, and at 45 degrees from the flow axis. Layer thickness were varied from 0.254 mm to 0.330 mm and all channels were created using soluble support structures. Pressure drops were measured for fully developed flow through pipes with an inside diameter of 5 mm and Reynolds numbers up to 62,000. Results are presented in terms of relative pressure drops as well as the wall surface roughness that would lead to such impacts. These flow-determined grain surface roughnesses are then compared against measurements of print surface roughness.\",\"PeriodicalId\":333138,\"journal\":{\"name\":\"Volume 2: Fluid Mechanics; Multiphase Flows\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Fluid Mechanics; Multiphase Flows\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2020-20252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Mechanics; Multiphase Flows","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2020-20252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过增材制造制造的流动管道,通常被称为3d打印,越来越受到各种工业应用的关注,因为它能够创建独特的保形流动路径,这是其他制造技术无法实现的。熔融长丝制造(FFF)是一种增材制造技术,由于其能够打印高温聚合物和可溶性支架,因此在创建内部流动通道方面产生了新的兴趣。FFF打印过程中打印参数的选择会导致表面具有显著的轮廓差异,这可能会严重影响管道内的流动特性。本文通过实验研究了用丙烯腈-丁二烯-苯乙烯(ABS)熔丝制造的圆形管道中湍流水流的两个打印参数。研究了平行、垂直和与流轴成45度的打印层相对于流的方向。层厚度从0.254 mm到0.330 mm不等,所有通道都使用可溶性支撑结构创建。在内径为5mm、雷诺数高达62,000的管道中,测量了充分发展的流体的压降。结果提出了相对压降以及壁面粗糙度,将导致这种影响。然后将这些由流动决定的颗粒表面粗糙度与打印表面粗糙度的测量值进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Print Parameters on Pressure Drop in Turbulent Flow Through 3-D Printed Pipes
Flow conduits made via additive manufacturing, commonly referred to as 3-D printing, are of increasing interest for a variety of industrial applications due to the ability to create unique and conformal flow paths that would not be possible with other fabrication techniques. Fused filament fabrication (FFF) is an additive manufacturing technique that is seeing new interest in the creation of internal flow channels with its ability to print high-temperature polymers and soluble supports. Printing parameter choices in the FFF printing process result in surfaces that can have significant profile differences that may significantly impact the flow characteristics within the conduits. In this study, two print parameters were experimentally studied for turbulent water flow through circular pipes created by fused filament fabrication out of acrylonitrile butadiene styrene (ABS). The print layer orientation relative to the flow was investigated for printing layers parallel, perpendicular, and at 45 degrees from the flow axis. Layer thickness were varied from 0.254 mm to 0.330 mm and all channels were created using soluble support structures. Pressure drops were measured for fully developed flow through pipes with an inside diameter of 5 mm and Reynolds numbers up to 62,000. Results are presented in terms of relative pressure drops as well as the wall surface roughness that would lead to such impacts. These flow-determined grain surface roughnesses are then compared against measurements of print surface roughness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lattice Boltzmann Method Based on Large-Eddy Simulation (LES) Used to Investigate the Unsteady Turbulent Flow on Series of Cavities Unified Assessment Approach for Courses With Simulation Component [And Professors in Hurry] Stereo-PIV Measurements of Turbulent Swirling Flow Inside a Pipe WearGP: A UQ/ML Wear Prediction Framework for Slurry Pump Impellers and Casings Optimal Control Strategy to Distribute Water Through Loop-Like Planar Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1