基于生理信号的情绪识别系统用树莓派III实现

Wiem Mimoun Ben Henia, Z. Lachiri
{"title":"基于生理信号的情绪识别系统用树莓派III实现","authors":"Wiem Mimoun Ben Henia, Z. Lachiri","doi":"10.1109/ICFSP.2017.8097053","DOIUrl":null,"url":null,"abstract":"Human machine interaction fieldhas potentialapplications in different domainssuch as medicine therapies for vulnerable persons. Thus, allowing the machine to identify and understand emotional states is one of the primordial stages for affective interactivity with Humans. Recent studies have proved that physiological signals contribute to recognize the emotion. In this paper, we aim to classify the affective states into two defined classes in arousal-valence model using peripheral physiological signals. For this aim, we explored the recent multimodal MAHNOB-HCI database that contains the bodily responses of 24 participants to 20 affective videos. After preprocessing the data and extracting features, we classified the emotion using the Support Vector Machine (SVM). The classification stage was implemented on Raspberry Pi III model B using Python platform. The obtained results are encouraging compared to recent related works.","PeriodicalId":382413,"journal":{"name":"2017 3rd International Conference on Frontiers of Signal Processing (ICFSP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Emotion recognition system based on physiological signals with Raspberry Pi III implementation\",\"authors\":\"Wiem Mimoun Ben Henia, Z. Lachiri\",\"doi\":\"10.1109/ICFSP.2017.8097053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human machine interaction fieldhas potentialapplications in different domainssuch as medicine therapies for vulnerable persons. Thus, allowing the machine to identify and understand emotional states is one of the primordial stages for affective interactivity with Humans. Recent studies have proved that physiological signals contribute to recognize the emotion. In this paper, we aim to classify the affective states into two defined classes in arousal-valence model using peripheral physiological signals. For this aim, we explored the recent multimodal MAHNOB-HCI database that contains the bodily responses of 24 participants to 20 affective videos. After preprocessing the data and extracting features, we classified the emotion using the Support Vector Machine (SVM). The classification stage was implemented on Raspberry Pi III model B using Python platform. The obtained results are encouraging compared to recent related works.\",\"PeriodicalId\":382413,\"journal\":{\"name\":\"2017 3rd International Conference on Frontiers of Signal Processing (ICFSP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3rd International Conference on Frontiers of Signal Processing (ICFSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFSP.2017.8097053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Frontiers of Signal Processing (ICFSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFSP.2017.8097053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

人机交互领域在不同领域具有潜在的应用前景,如针对弱势群体的药物治疗。因此,允许机器识别和理解情绪状态是与人类进行情感互动的原始阶段之一。最近的研究已经证明,生理信号有助于识别情绪。本文旨在利用外周生理信号将唤醒-效价模型中的情感状态分为两类。为此,我们探索了最近的多模态MAHNOB-HCI数据库,该数据库包含24名参与者对20个情感视频的身体反应。在对数据进行预处理和特征提取后,利用支持向量机(SVM)对情感进行分类。分类阶段在树莓派III模型B上使用Python平台实现。与最近的相关工作相比,所得结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emotion recognition system based on physiological signals with Raspberry Pi III implementation
Human machine interaction fieldhas potentialapplications in different domainssuch as medicine therapies for vulnerable persons. Thus, allowing the machine to identify and understand emotional states is one of the primordial stages for affective interactivity with Humans. Recent studies have proved that physiological signals contribute to recognize the emotion. In this paper, we aim to classify the affective states into two defined classes in arousal-valence model using peripheral physiological signals. For this aim, we explored the recent multimodal MAHNOB-HCI database that contains the bodily responses of 24 participants to 20 affective videos. After preprocessing the data and extracting features, we classified the emotion using the Support Vector Machine (SVM). The classification stage was implemented on Raspberry Pi III model B using Python platform. The obtained results are encouraging compared to recent related works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online codebook modeling based background subtraction with a moving camera A new interacting multiple model particle filter based ballistic missile tracking method Efficient handoff spectrum scheme using fuzzy decision making in cognitive radio system Emotion recognition system based on physiological signals with Raspberry Pi III implementation Random forests based recognition of the clinical labels using brain MRI scans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1