利用进化计算学习如何检测乳腺癌

D. B. Fogel, P. Angeline, V. W. Porto, E. C. Wasson, E. Boughton
{"title":"利用进化计算学习如何检测乳腺癌","authors":"D. B. Fogel, P. Angeline, V. W. Porto, E. C. Wasson, E. Boughton","doi":"10.1109/CEC.1999.785485","DOIUrl":null,"url":null,"abstract":"Computer assisted mammography can be used to provide a second opinion and may improve the sensitivity and specificity of diagnosis. Algorithms may also provide a basis for mining data from available training sets, thereby allowing the user to recognize relationships between input features and alternative conditions (e.g., malignant, benign). The paper provides a review of recent efforts to evolve neural networks and linear classifiers to assist in the detection of breast cancer.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using evolutionary computation to learn about detecting breast cancer\",\"authors\":\"D. B. Fogel, P. Angeline, V. W. Porto, E. C. Wasson, E. Boughton\",\"doi\":\"10.1109/CEC.1999.785485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer assisted mammography can be used to provide a second opinion and may improve the sensitivity and specificity of diagnosis. Algorithms may also provide a basis for mining data from available training sets, thereby allowing the user to recognize relationships between input features and alternative conditions (e.g., malignant, benign). The paper provides a review of recent efforts to evolve neural networks and linear classifiers to assist in the detection of breast cancer.\",\"PeriodicalId\":292523,\"journal\":{\"name\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.1999.785485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.785485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

计算机辅助乳房x线摄影可用于提供第二意见,并可提高诊断的敏感性和特异性。算法还可以为从可用的训练集中挖掘数据提供基础,从而允许用户识别输入特征和备选条件(例如,恶性的,良性的)之间的关系。本文提供了最近的努力,以发展神经网络和线性分类器,以协助检测乳腺癌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using evolutionary computation to learn about detecting breast cancer
Computer assisted mammography can be used to provide a second opinion and may improve the sensitivity and specificity of diagnosis. Algorithms may also provide a basis for mining data from available training sets, thereby allowing the user to recognize relationships between input features and alternative conditions (e.g., malignant, benign). The paper provides a review of recent efforts to evolve neural networks and linear classifiers to assist in the detection of breast cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of a characteristic bimodal convergence-time/mutation-rate feature in evolutionary search Classifier systems evolving multi-agent system with distributed elitism A unified model of non-panmictic population structures in evolutionary algorithms Control of autonomous robots using fuzzy logic controllers tuned by genetic algorithms Oil reservoir production forecasting with uncertainty estimation using genetic algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1